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ABSTRACT
We present practical models for the physical layer behaviors of
packet reception and carrier sense with interference in static wire-
less networks. These models use measurements of a real network
rather than abstract RF propagation models as the basis for accu-
racy in complex environments. Seeding our models requiresN

trials in anN node network, in which each sender transmits in
turn and receivers measure RSSI values and packet counts, both
of which are easily obtainable. The models then predict packet
delivery and throughput in the same network for different sets of
transmitters with the same node placements. We evaluate our mod-
els for the base case of two senders that broadcast packets simul-
taneously. We find that they are effective at predicting when there
will be significant interference effects. Across many predictions,
we obtain an RMS error for 802.11a and 802.11b of a half and a
third, respectively, of a measurement-based model that ignores in-
terference.

Categories and Subject Descriptors
C.4 [Performance of systems]: Modeling techniques

General Terms
Measurement, performance

Keywords
Modeling, interference, RSSI

1. INTRODUCTION
Wireless networks such as 802.11 have enjoyed an unprecedented

adoption rate in recent years, and their deployed base continues to
grow. Originally envisioned to support mobile devices, wireless
has also proved popular in more static settings that involve PCs
and laptops in homes and offices because it removes the need for
wires [2, 15]. A fundamental issue in these networks is interfer-
ence, in which transmissions from one sender-receiver pair affect
those of other pairs. Interference defines the spatial boundaries for
spectrum reuse, and it directly impacts the assignment of senders
to channels [18], network capacity [10], and routing choices [8].

It is thus startling that packet delivery under interference is poorly
understood for real networks. Common protocols such as 802.11
make conservative scheduling decisions, serializing the transmis-
sions of senders who can hear each other in case there is harmful
interference. Most explorations of protocols with respect to inter-
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ference use simple abstract models that may assume signal prop-
agation is a simple function of distance, that coverage of radios is
circular, that interference range is twice the transmission range, and
so forth. Unfortunately, empirical data from experimental wireless
networks has shown that all of these models are largely inaccu-
rate [14, 17]. RF propagation in realistic environments is suffi-
ciently complex that the only existing feasible method for estimat-
ing packet delivery between two nodes is to measure it.

As a response, there has been a shift towards experimental wire-
less networks in which packet delivery and higher level metrics
have been measured for real radios working in particular network
and protocol designs [3, 6, 11]. This approach is valuable because
it mitigates the problem of unrealistic RF models; it has improved
the understanding of wireless behaviors. But it trades one peril for
another. Measuring experimental networks lacks a crucial benefit
of analysis and simulation: the ability to explore a large space of
configurations with reproducible results. It is too time-consuming
to run experimental networks in a wide variety of settings, and re-
sults in one setting do not necessarily predict results in a different
setting or even at a later time. This undermines the value of exper-
iments by making it difficult to meaningfully compare results.

In our work, we ask whether it is possible to combine the strengths
of both methods: can we use simple measurements on a wireless
network to capture its RF characteristics and then predict how it
will perform when running under different settings? This paper is
a first step in that direction in which we derive a practical model of
packet delivery under interference.

We use measurements on a running network to seed our model
because predicting RF propagation in a complex environment is a
hopelessly challenging task. To ensure that our model is applicable
to real networks, we rely on onlyreceived signal strength indicator
(RSSI) values and pair-wise delivery counts, since both are easily
obtained using commodity wireless cards. We record this infor-
mation when there is a single-sender as observed at all receivers,
which requiresN trials to obtainN2 parameters for anN node
network. We then formulate low-level models for packet reception
and carrier-sense by relating the traditional notion of SINR (signal
to interference plus noise ratio) to our measurements. We investi-
gate 802.11 characteristics, both in a controlled setting with atten-
uators and on a building network, to provide a foundation for the
models. These models are in turn fed into a higher-layer system
model that predicts packet delivery and interference for the same
node placements but different sets of transmitters. We view this as
a foundation for exploring other higher-level design choices, such
as RTS/CTS exchanges, routing and channel assignments.

We have evaluated the base case of our models, in which two
senders compete to transmit fixed-size broadcast packets at a set
bit-rate, on our in-building 802.11 testbed. We find that they are
effective at identifying the situations in which there will be signifi-
cant interference and predicting the magnitude of the effect. Across
many random trials the RMS error of our throughput predictions is



Figure 1: Our wireless testbed, consisting of fifteen 802.11 a/b/g
nodes. The width of the building is 184 ft.

11% of the channel bitrate for 802.11a and 9% for 802.11b. This is
comparable to the temporal variability we observe in the wireless
medium. In contrast, the RMS error of a naive model that ignores
interference is two or three times higher, 24% for 802.11a and 31%
for 802.11b, with predictions that are often poor when there is sig-
nificant interference. To further demonstrate the utility of our mod-
els, we show how they can be used to predict the conflict graph
of a network. We view these results as promising, and are hope-
ful that future work will extend them to cover a larger fraction of
the many transmission options: more than two senders, mixtures of
packet sizes and rates, unicast traffic with acknowledgements and
retransmissions, and so on.

The rest of this paper is organized as follows. The network en-
vironments we experiment with are described in Section 2. We
study wireless characteristics to support our models in Section 3.
We develop our models in Section 4. In Section 5, we evaluate our
models. We then present related work and conclude.

2. EXPERIMENTAL PLATFORMS
The work described in this paper uses measurements for three

purposes:(i) to gain an understanding of the characteristics of
wireless networks(ii) as inputs to the modeling process we pro-
pose, and(iii) as the basis of an experimental evaluation of the
accuracy of our model. We now describe the environments we mea-
sured for these purposes.

2.1 Testbed Experiments
The primary vehicle for our empirical studies is an indoor testbed

of fifteen stationary PCs shown in Figure 1. The testbed is located
on the third floor of our building, mimicking a deployment of wire-
less nodes in an office scenario. Each testbed node has an 802.11
a/b/g Atheros card that we operate using the “stripped” MadWiFi
driver [4].

We depend onreceived signal strength indicator(RSSI) values
that are reported by all commodity wireless cards. RSSIs are esti-
mates of the signal energy at the receiver during packet reception,
measured during the PLCP headers of arriving packets and reported
on proprietary (and different) scales. Our Atheros cards, for exam-
ple, report RSSI as10log10(

S+I

n
), whereS is the strength of the

incoming signal,I is the interfering energy in the same band, andn

is a constant (-95 dBm) that represents the “noise floor” inside the

radio. Atheros RSSI is thus dB relative to the noise floor. To give
results that are independent of card vendors, we transform RSSI
values toreceived signal strength(RSS) values that give absolute
energy levels. That is, RSS is defined to beS +I. Additionally, we
abuse notation slightly by reporting specific values in (log scale)
dBm units, as is common practice, while writing formulas such as
the two above to manipulate (non-log scale) quantities such as mW.

Because our focus is raw packet delivery probabilities, we oper-
ate in broadcast mode, which suppresses MAC-level features such
as ACKs and RTS/CTS exchanges.

The testbed operates in a noisy environment, with many active
people and energy sources, including a building-wide 802.11b/g
production network. We use Channel 3 for 802.11b experiments,
which is separate but non-orthogonal to Channels 1 and 6 of the of-
ficial network (which also uses Channel 11). This network acts as
a realistic source of external interference for our testbed, given cur-
rent dense urban deployments of wireless networks. It complicates
our efforts to predict wireless performance, but we find predictabil-
ity despite it.

2.2 Attenuator Experiments
To identify the causes of variability in live wireless networks, we

also conduct controlled experiments with the same Atheros cards.
This is valuable for verifying key characteristics of the hardware,
while limiting the impact of competing energy sources.

Specifically, we disconnect the antennas from two cards and at-
tach shielded SMA cables, along with both fixed and variable at-
tenuators to control the signal strength at the receiver. We surround
the receiver with RF shielding foam to minimize influences from
the local environment, since these cards have some ability to re-
ceive packets even without an attached antenna. Our configuration
follows sensitivity experiment guidelines provided by Intersil [1].

3. WIRELESS CHARACTERISTICS
In this section, we characterize wireless delivery in our testbed

and via attenuator experiments to identify the key effects for our
models. In successive subsections, we study the feasibility of pre-
dicting packet delivery using practical measurements from com-
modity hardware, the nature and impact of external interference,
and temporal stability of a wireless environment. We perform ex-
periments for 802.11a and 802.11b but present results only for the
latter due to space limitations.

3.1 Packet Delivery and RSSs
The SINR ratio is widely used in the literature to model packet

delivery probabilities: packets are successfully received ifS

I+n
is

above a certain threshold, and otherwise are not. Applying this
model in practice, though, presents several problems. For one, the
SINR model itself is only approximate, as it ignores factors such as
multipath [3]. Moreover, commodity wireless cards do not report
the information required to use it. For instance, our cards report
only their version of RSS, the minimum feedback allowed by the
802.11 standard. Some other cards also report an estimate ofI by
measuring energy in the air when no packets are being sent, but
this estimate may be inaccurate during packet delivery, and we will
show that it is not necessary in any case.

Because our ultimate goal is to construct apractical model, we
only employ measures that are widely available. We therefore turn
our attention to RSS and its use in predicting packet delivery prob-
abilities. We begin with experiments performed in a controlled set-
ting, followed by those taken in an uncontrolled environment.

Controlled setting When the interferenceI is negligible, cor-
rectly measured RSS should perfectly reflect packet delivery. We
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Figure 2: (a) Delivery probability for Atheros cards as a func-
tion of mean RSS, in attenuator experiments.(b) The CDF of
observed RSS values for a particular attenuation, as circled on
the left graph.

use our attenuator setup to test this hypothesis. We repeat five
minute floods of large broadcast packets (1084 bytes, including
headers) with a set of nine different signal attenuations, from min-
imal attenuation to a level that prevents any packets from being
received. The entire process is repeated for three separate rounds.

Figure 2(a) shows the probability of successful delivery as a
function of measured RSS. Each point represents mean values over
a given five minute round. There is a narrow transition range of
less than 5 dBm, below which no packets are received, and above
which packets are received with near certainty. This is an encour-
aging outcome, as RSS displays a simple relationship with delivery
probability.

Figure 2(a) suggests that RSSs averaged over thousands of pack-
ets are good predictors of delivery probability. Figure 2(b) exam-
ines a much smaller measurement interval. It plots the cumulative
distribution function (CDF) of RSSs measured with a particular at-
tenuation, corresponding to the circled points on Figure 2(a). Most
reported values are quite close to each other, but there remains some
variation1. For our purposes, this means the RSS of a single packet
cannot be taken in isolation and we must sample multiple packets
for a measure that accurately reflects packet delivery.

Uncontrolled Setting Next, we run experiments on our testbed
to study whether RSS is predictive of packet delivery in an uncon-
trolled environment as well. Here, individual nodes transmit large
broadcast packets (1084 bytes) for two minutes, while all other
nodes record the packets they receive. We repeat for three rounds,
each conducted at night to minimize variation.

Figure 3 shows delivery probability (averaged over the two min-
utes) as a function of mean RSS. It includes points for all receivers
in the testbed for all three rounds. With all receiver data combined,
there is a weak correlation between the two quantities: some nodes
exhibit high delivery probabilities at an RSS of -80 dBm, while oth-
ers receive only 50% at an RSS of -70 dBm. However, there is a
stronger correlation when viewing receivers individually, as shown
by the lines for nodes 8, 14, and 15. While the thresholds differ
between the nodes, each node exhibits a fairly clear relationship
between delivery probability and RSS. The differences in the rela-
tionships are likely due to different distributions of external inter-
ference experienced by these nodes, which we investigate shortly.

We can also see from the scatter plot in Figure 4 that distance is
a poor indicator of delivery probability compared to per-node RSS,
as found by earlier work [14, 3, 17, 7]. To emphasize the problem,

1We hypothesize the variation is external interference due to im-
perfect RF shielding. Similar experiments on less sensitive Prism
cards showed almost no variation in RSS.
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Figure 3: Scatter plot of delivery probability as a function of
mean RSS, for all receivers. Lines connect points for three par-
ticular receivers; despite the weak correlation between delivery
probability and RSS across all receivers, the correlation is strong
for individual nodes.
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Figure 4: Scatter plot of delivery probability as a function of dis-
tance, for all receivers. Points for Node 1 are highlighted.

we have highlighted the points for node 1; they present no clear
pattern that could be used for prediction in distance based models.

In conclusion, we observe a relationship between measured RSS
and delivery probability, but that the exact relationship between the
two can vary substantially across nodes. Note that this is not incon-
sistent with RSS measurements from other studies, e.g., Roofnet
operates in a setting where inter-node distances caused delay spreads
to exceed the engineering margin [3], and most other studies com-
bine RSSs across receivers, despite the fact that they may have dif-
ferent sensitivities [12].

3.2 Nature of External Interference
We now study external interference: energy that is not caused by

packet transmissions in the system under our control. Specifically,
we study the region over which it has a significant effect. Like all
signals, this energy will be attenuated with distance.

External interference might have a measureable effect on packet
delivery across multiple nodes or be confined to a single node. To
assess this, we look for correlation in packet losses at different
nodes. In multiple trials, each with a different sender, we had the
sender transmit broadcast packets with increasing sequence num-
bers. All other nodes logged which packets they successfully re-
ceived. We found loss between the majority of pairs of receivers to
be roughly independent, such that loss at one receiver was not gen-
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Figure 5: (a) Log-linear PDF of loss burst length for all receivers
with loss probabilities less than one half.(b) Probability that
packeti is lost, given that packeti − k was lost. The gray line
shows aggregate data for all receivers with loss probabilities less
than one half, and the black line highlights Node 9. Dashed lines
show the overall loss probabilities for each.

erally a good indicator of loss elsewhere. This is consistent with
other studies [16].

We also performed a simple check to test whether external in-
terference is a property of specific machines (as it is generated
by their components) or specific locations (as it is generated by
other sources in the environment). To do so, we focused on one
of the pairs of nodes with asymmetric delivery probabilities, de-
spite homogeneous hardware and software configurations. We first
swapped just wireless cards between the two machines, and then
the two machines themselves between their locations. We found
that the asymmetry was tied only to the location: it still held, in the
same direction, despite swapping equipment.

These experiments lead us to conclude that external interference
is primarily a local phenomenon in our testbed. For our purposes,
it has to be measured independently at each node.

3.3 Stability Across Time
To be effective, a measurement-based model must be guided by

an understanding of the system behavior across time. This deter-
mines, for instance, how long the system needs to be measured to
obtain representative values and how far into the future a set of
measurements can be used to make predictions. Here, we study
stability on different timescales.

3.3.1 Short Term Stability: Loss Events
It is well known that wireless networks tend to have bursty losses.

The length and frequency of the bursts determine how well mea-
surements taken over short time scales are likely to predict the im-
mediate future. To study them, we broadcast packets from node 12
for one hour at night. Figure 5(a) shows a PDF of loss burst length,
measured across all receivers with a loss probability under 50%.
(Receivers with larger loss probabilities would appear as very long
bursts of unpredictable size.) There is a somewhat less than geo-
metric decline in burst length (as the y-axis is log-scale). This sug-
gests that losses are slightly bursty, but only over relatively short
intervals. Indeed, we find that 92% of all bursts have a length of 3
packets or less, though there are bursts that last up to 76 packets.

An alternative view of this data is given in Figure 5(b). It tries
to uncover dependence among non-consecutive losses. The graph
shows the aggregate data for all receivers with loss probabilities
less than 50% (in gray), plus the data for node 9 (in black) as an
individual example. The dashed lines show the overall loss proba-
bilities. The solid line shows the auto-conditional loss probability:
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Figure 6: The CDF of variability in delivery probability measure-
ments at different time scales.

that packeti was lost, given that packeti − k was lost. If losses
were fully independent, this probability would equal the overall
loss probability for allk. Instead, we see that for small values ofk

the auto-conditional loss probability tends to be higher than average
(particularly for node 9), which reflects bursty losses. Moreover, it
takes a separation of around 100 packets, many times the average
burst length, before a current packet loss is irrelevant to the future.
This indicates that it is likely that packet loss bursts are often fol-
lowed by other bursts, separated by only a few received packets.
In intervals larger than 100 packets, however, losses appear to be
largely independent.

Finally, there is clearly a periodic effect in which loss probability
is slightly increased. As hypothesized by Miuet al. [16], this is
potentially due to interference from beacon frames emitted by the
building’s official wireless network on a non-orthogonal channel.
We find the peaks to occur approximately 10 times a second when
we translate packets into time for our setup. This is a common
frequency for beacon frames.

In conclusion, we observe that losses do tend to occur in small
bursts, but can be treated as independent for larger time intervals
of several seconds or minutes. This means that we must measure
the network at least for such timescales, and our predictions will be
stable at such timescales.

3.3.2 Longer-Term Stability: Stationarity
We now look at the variability among consecutive measurement

intervals separated by differing amounts of time. Figure 6 is a CDF
of the difference between the average delivery probability for all
sender-receiver pairs measured for one time interval and the next;
it would be a vertical line at zero if all intervals were identical. The
solid line depicts a time scale of 10 seconds, for an experiment in
which senders transmitted for two minutes at a time. The dashed
line compares delivery probabilities averaged over two minutes be-
tween rounds separated by about two hours. Finally, the dotted
line compares delivery probabilities, averaged over two minutes,
between an experiment conducted late at night and a second exper-
iment the following day.

We see variability to be small at the smallest time scale, and
to rise noticeably over the longest time scale; the latter also in-
cludes day/night changes in patterns of activity that reduce pre-
dictability. To quantify the difference from vertical, we compute
the root mean square error (RMSE) for each scale: it is 4%, 12%,
and 18%, respectively. We conclude that there is enough similarity
between measurements to make useful predictions over moderate
time scales of minutes to hours, but that prediction accuracy will
be degraded for longer periods of time.
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Figure 7: Delivery probability (averaged over one second inter-
vals) and RSS over time. The gray boxes indicate when a nearby
microwave oven was turned on.

3.3.3 Atypical Events
We also observed periods of atypical network behavior in which

measurements are not close to representative. We report on two
causes and their effects below. Fortunately, these periods tend to be
rare and do not detract from overall predictability. To quantify this,
we computed how often delivery probability and RSS values varied
from their 10 second average by more than 10% of their respective
ranges (i.e., a delivery probability of 0.1 and a RSS value change
of 6) for two hand-sampled hour-long experiments with a given
sender. We found that delivery probability was atypical 4.6% of
the time, and observed RSS values were atypical 3.7% of the time.

Non-802.11 energy sources In reviewing an early set of ex-
periment results, we noticed a period during which delivery prob-
abilities for some nodes fell dramatically, even though RSS values
showed no similar trend. Because of the locations of the affected
nodes, we guessed that the cause might be interference from a mi-
crowave oven. We succeeded in reproducing the effect with a con-
trolled experiment in which the microwave was switched on and
off while one node sent to another. Figure 7 plots the observed
RSS and packet delivery probability at the receiver as a function of
time. It shows that microwave activity significantly degrades de-
livery without a clear effect on RSS, for the packets that were still
received.

Shadowing We also observed instances where RSS dropped
together with delivery probability. We believe that these events re-
sult from signal obstructions, or “shadowing,” of the receiver due
to macro-scale changes in the environment. We were able to exper-
imentally support this hypothesis by introducing obstacles between
the sender and receiver.

In conclusion, while measured RSS is generally predictive of de-
livery probability, various transient sources of interfering energy
can distort that relationship. One needs to be careful that this re-
lationship is not measured during such an event. We measure over
multiple rounds because of this in Section 5. It may also be possi-
ble to develop online heuristics to detect atypical periods. Note that
persistent sources of interference are not an issue since they should
be reflected by measurements.

3.4 Summary
Overall, we conclude that there is a general relationship between

measured RSS and delivery probability in real networks; the chal-
lenge is to make it precise enough to use for prediction. The major

source of external interference seems to be the local environment,
which varies substantially across nodes. While wireless networks
exhibit substantial variability, measurements of average behavior
over even relatively short time periods tend to be stable, even for
widely separated intervals. Finally, there may be infrequent atypi-
cal periods during which measurements are not representative.

4. MEASUREMENT-BASED MODEL
We now develop PHY models for wireless delivery with inter-

ference by recasting the classical notion of signal-to-interference-
plus-noise-ratio (SINR) in terms of our observable measurements.
These PHY models are combined with higher layer models, such as
the simple MAC model we provide, to predict the performance of
a static wireless network with arbitrary sets of interfering senders
based on past measurements with individual senders.

4.1 Operation
Our models operate as follows:

1. The RF profile of the network is measured. Each of the
N senders broadcasts packets in turn, while the other nodes
record the number of received packets along with their RSS
values, creatingN2 data points. We use special-purpose traf-
fic for these measurements, though in a deployed network
they could be gathered using application traffic and 802.11
sequence numbers.

2. ThePHY receiver modelwe derive below is used with the
RF profile to compute the probability a packet is correctly
received from a given sender in the presence of competing
transmissions.

3. ThePHY deferral modelwe derive below is used with the
RF profile to compute the probability that a sender will sense
competing transmissions and defer its own transmission.

4. MAC and traffic modelsbuild on the PHY models to pre-
dict the performance of the network in a specified config-
uration. MAC models capture higher-layer protocol rules,
e.g., CSMA/CA. Traffic models specify the sets of nodes that
compete to send packets at the same time, with possibly dif-
ferent power levels than measured in the RF profile but the
same packet size and transmit rate. This would be imple-
mented as a packet-level simulator in the general case. For a
concrete exposition in this paper, we provide closed-form ap-
proximations for the analytically tractable case of two broad-
cast senders running CSMA/CA, at a fixed power level and
transmit rate.

Our key contribution is the PHY models. They are based on
the classical signal-to-interference-plus-noise-ratio (SINR) model
interpreted in our context. We build them in stages below and then
summarize how they are used for prediction.

4.2 Recasting the SINR Model
We recast the SINR model that is used widely in the literature

so that we can use it with our measurements. The version we use
gives the probabilitypr that a receiver noder can decode a packet
transmitted from a sender nodes:

pr(Asr(Psr)) = Prob

»

Asr(Psr)

Ir + nr

≥ δr

–

(1)



In this equation2, the sender node is visible at the receiver in
terms of its signal power,Psr, as attenuated along the path froms
to r. The functionAsr(·) models this attenuation so thatAsr(Psr)
is the signal strength at the receiver. The interference from the
environment experienced atr while trying to receive the packet
is Ir. We take it to be a receiver-specific random variable, and it
causespr to be a probability over packets.Ir does not include
the thermal noise floor,nr, which is generated by the node itself
and assumed constant. There is no dependence on packet length
because we take it to be fixed. Finally, for a given transmit bit-rate
and modulation,δr is the SINR threshold of the radio atr above
which it can successfully decode a packet.

Unfortunately, we cannot use equation (1) directly to compute
delivery probabilities. There are two difficulties. The first is that
attenuation is a hopelessly complicated function that depends on
many details of the environment. To avoid this complexity, much
work uses generic distance-based models in whichAsr(P) ≈ d−α

sr P,
for 2 ≤ α ≤ 4, wheredsr is the distance betweens andr. α = 2
corresponds to free space, while higher values reflect denser and
more irregular environments such as office buildings. But in real
networks, it is a poor predictor of packet delivery [14] and hence
not appropriate for our purposes.

The second difficulty is that we cannot obtain the parameters of
the SINR model directly using commodity hardware. We need the
strength of the incoming signalS and the distribution of interfer-
enceI. However, the information widely accessible across wireless
cards is the reported RSS value3. RSS is a measure of the energy at
the receiver during decoding, and so conflates signal strength and
interference:RSS = S + I. Additionally, RSSs are available
only for successfully received packets, increasing the challenge of
estimating the interference distribution.

Despite these problems, we can use measurements to leverage
the SINR model. Our experiments in Section 3 indicate a strong
relationship between RSS and delivery probability. The exact form
varies with receivers and network deployments, but we still expect
the signal strength, interference and noise relationships to be con-
sistent with the SINR model. To capture these relationships, we
use the measurements described above to create an RF profile of
the network. The measured RSS values and packet counts allow
each receiver to compute several parameters:
• The mean RSS for packets received atr from another nodes,

which we denotēRsr, can easily be computed by averaging.
•We can also estimate the average external interference at a node

r, which we denotēIr, from our earlier observation that most of
the variation in RSS values stems from interference. If we assume
that at least one packet across all senders was received when the
external interference was almost zero,Īr can be estimated by the
mean excess of the RSS values from individual senders above their
minimum observed values.
• Finally, we obtain the curves of the delivery probabilities asso-

ciated with the mean RSS levels of the different senders. We denote
this with p̂r(R̄sr), the probability of correctly decoding packets
with an RSS of̄Rsr atr. This is an approximation of the actual de-
livery probability because of the averaging that has been performed,
and because RSS is only reported for packets that are successfully
received. Nonetheless, it is appealing to think ofp̂r(· ) as a sur-

2We abuse notation slightly by reporting specificIr, nr and RSS
values in (log-scale) dBm units, as is common practice, but writing
all formulas in terms of (non-log scale) quantities such as mW.
3Cards actually provide manufacturer specific RSSI values. As ex-
plained in Section 2.1, we transform these into somewhat more uni-
versal RSS values.

rogate forpr(· ) where the function domain has been transformed
from signal power to RSS.

To work with these measurements, we observe that incoming
signal strength is approximately constant for stationary nodes at a
given power level. Thus, we can estimate the true incoming signal
energy at the receiver, which we denoteSsr:

Ssr = Asr(Psr) ≈ R̄sr − Īr (2)

We can now recast the SINR model to fit our measurements.
Substituting (2) into (1) and usinĝpr(· ) to estimatepr(· ) we have:

pr(Ssr) = Prob

»

R̄sr − Īr

Ir + nr

≥ δr

–

≈ p̂r(R̄sr) (3)

All of the terms here are constants except forIr. We rewrite the
equation to expose the distribution of interference in a form we will
use shortly:

pr(Ssr) = Prob

»

Ir ≤
R̄sr − Īr

δr

− nr

–

≈ p̂r(R̄sr) (4)

That is, the SINR model enables us to use RSS measurements
to estimate the delivery probability as a function of interference,
which is the prime cause of variation in packet delivery.

4.3 PHY Receiver Model
The PHY receiver model predicts the probability that a receiver

r will correctly decode a packet transmitted by a senders while
packets are being sent by other, competing senders. We can apply
the SINR model to this situation by treating the energy from the
competing senders as adding to the external interference. This may
seem surprising because it ignores temporal considerations such as
whether the competing packet starts its transmission slightly be-
fore or after the sender. But this reflects “capture effects” in which
real radios lock onto stronger signals regardless of when they oc-
cur [13]. Thus, we can restate (3) and (4) to give delivery probabil-
ities when there is a competing sendert as follows:

pr(Ssr, Str) = Prob

»

R̄sr − Īr

R̄tr − Īr + Ir + nr

≥ δr

–

= Prob

»

Ir ≤
R̄sr − Īr

δr

−
`

R̄tr − Īr
´

− nr

–

(5)

A key insight is that we can evaluate this probability with the RF
profile we already have available. According to (4), each measured
single-sender delivery probability,̂pr(R̄sr), gives the probability
that the interferenceIr is below a corresponding threshold. We can
now compute this threshold for the case of competing senders by
using (5), but we do not have measured delivery probabilities for
multiple senders. Instead, we can find a hypothetical single-sender
RSS,RXt

sr, that corresponds to the interference threshold for com-
peting senders. Once we have this new RSS, we can predict the
delivery probability for competing senders using the single-sender
probabilitieŝpr(R̄sr).

From (4) and (5), we want̂pr(RXt
sr) such that:

RXt
sr − Īr

δr

− nr =
R̄sr − Īr

δr

−
`

R̄tr − Īr
´

− nr (6)

Solving forRXt
sr, we obtain:

RX
t

sr = R̄sr − δr

`

R̄tr − Īr
´

(7)



Our prediction for the delivery probability of packets froms
whent is also transmitting is then the RF profile valuep̂r(RXt

sr).
As a practical matter, we will not have measuredp̂r(· ) at the pre-
cise RSS that is needed. To estimate it, we piecewise interpolate the
p̂r(R̄sr) data points. It is also the case thatR̄tr will not be available
if r received no packets fromt. However, we can then treat it as
zero without affecting accuracy in practice. This is becauser is
likely to receive at least some packets fromt, given that it receives
packets froms, unlessR̄tr is significantly smaller than̄Rsr. So,
if R̄tr is not available, then the term containing it is likely to be
negligible and can be omitted.

We have considered one competing sender above for simplicity,
but it is straightforward to extend the equations for multiple simul-
taneous senders by introducing additional interference terms. We
can also factor in changes in the transmit power level of the senders
relative to the single-sender measurements at the same time. This
is because changing the power of the transmitter by some factor
causes the same change in the power of the received signal. If we
change the sender power by a factorα, and we have competing
sendersti, i ≥ 0, each of which changes their power by a factor
αi, then we can restate (5) and (7) as:

pr(Ssr, St0r, . . .) = Pr

"

Ir ≤
α(R̄sr − Īr)

δr

−
X

i

αi(R̄tir − Īr) − nr

#

(8)

RXti
sr = αR̄sr + (1 − α)̄Ir − δr

X

i

αi

`

R̄tir − Īr
´

(9)

Our complete PHY receiver model predicts the delivery proba-
bility by computingRXti

sr using (9) and then looking up the as-
sociated delivery probability in the RF profile for receiverr. That
is:

pr(Ssr, St0r, . . .) = p̂r(RX
ti

sr) (10)

As a caveat, we cannot scale up the power for senders for which
we did not receive sufficient packets to estimate their mean RSS,
R̄, in the RF profile.

4.4 PHY Deferral Model
The PHY deferral model gives the probability that a node will

defer its own transmission to competing transmissions because it
senses that the channel is busy. We use a similar approach as above
to derive it.

We assume that a node senses the channel busy when the to-
tal energy it receives is above the CCA (clear-channel assessment)
threshold,βs, which depends on the radio. Now consider a node
s preparing to send to some other node when there are competing
sendersti, i ≥ 0 with scaled powerαi as before. The probability
ps() thats senses the channel busy and defers is:

ps(St0s, . . .) = Prob

"

X

i

αi(R̄tis − Īs) + Is > βs

#

(11)

We can rewrite this in terms of interference as we did with (4):

ps(St0s, . . .) = 1 − Prob

"

Is < βs −
X

i

αi(R̄tis − Īs)

#

(12)

As before, we can use (4) to find a hypothetical single-sender
RSSTXtis that produces deferrals equivalent to those in (12). We
start with:

TXtis − Īs

δs

− ns = βs −
X

i

αi(R̄tis − Īs) (13)

Then, our prediction for the likelihood that nodes will defer its
transmission is the complement of the delivery probability associ-
ated withTXtis in the RF profile:

TXtis = δs

 

βs −
X

i

αi(R̄tis − Īs) + ns

!

+ Īs (14)

ps(St0s, . . .) = 1 − p̂s (TXtis) (15)

4.5 MAC and Traffic Models
To apply our PHY models, we need higher layer MAC and traf-

fic models that capture the rest of the system by specifying which
nodes have packets to send at what times, and the protocol rules
by which they attempt to transmit packets. In the general case, this
might be done with a simulator that models a traffic workload and
higher-layer protocol rules, such as 802.11 CSMA/CA, exponen-
tial backoff, and acknowledgements with retransmissions. Here,
we give a model for the analytically tractable case of two compet-
ing broadcast senders that run CSMA/CA. This model is only ap-
proximate as it ignores various corner-cases. However, it provides
a self-contained example for this paper, and our evaluation shows
that it already has sufficient predictive power to validate the base
case of wireless interference.

In 802.11, CSMA/CA with broadcast senders works as follows.
Each node senses whether the channel is busy, i.e., whether the re-
ceived energy is above the CCA threshold. It defers if so. To avoid
collisions when the channel becomes free, each node randomly
picks a number of fixed-time slots in the range[0, W − 1].4 The
node counts down this many free slots to pass before transmitting
the packet, pausing the countdown when the channel is busy. Ide-
ally, transmission should occur immediately when the countdown
stops. Our observations, though, suggest that in practice there is a
a turnaround time equal to about a slot time.

The countdown operations to avoid collisions are effectively races
among the nodes. We are interested in average behavior when two
nodes,s andt, continuously send fixed-size packets. To estimate
the probability of a collision, consider a moment when a node, say
s, has just finished a transmission. At that pointt has some re-
maining countdown timeCt < WT , whereT is the slot time,
ands picks a new countdown time,Cs. Because slot boundaries
are not synchronized, we modelCs as uniformly distributed over
(0, WT ). A collision occurs on the next packet transmission ifCs

andCt are within a turnaround time, that is, ifCs falls in a window
of length2T centered aroundCt. Because the nodes are in a sym-
metric situation, each wins the race half the time when there are no
collisions. Thus, forn ∈ {s, t}:

Prob [n collides] =
2T

WT
=

2

W

Prob [n wins] =
1

2
−

1

W
(16)

Prob [n loses] = Prob [n wins]

We are interested in the number of packets sent by each combi-
nation of senders, and the number of packets received from each
sender by each other receiver. To obtain this performance data, we
4There is no exponential backoff for broadcasts in 802.11.



Inputs to the model Derivation method
p̂r(· ) Function that maps RSS to delivery probability atr

R̄sr Average RSS observed atr whens sends alone RF profile measurements
Īr Average external interference (variation in RSSs) atr

nr Thermal noise inside the card
δr SINR threshold for successful reception Hardware-specific (constant)
βr CCA threshold for deferral

Table 1: Summary of the inputs to the PHY models. All inputs are per-node.

combine the race outcomes with the PHY models. A nodes will
send alone when it both wins the race and the other nodet defers to
the energy thats transmits. A nodes will send at the same time as
a competitort when it either collides, or loses the race but fails to
defer to the energy thatt transmits. Assuming that a packet trans-
mission time is much larger than the largest countdown delay, the
fraction of time that packets will be transmitted by different com-
binations of senderss andt is approximately:

Frac [s sends alone] =Prob [s wins] (1 − p̂t (TXst))

Frac [t sends alone] =Prob [t wins] (1 − p̂s (TXts))

Frac [s, t send] =Prob [s collides] (17)

+ Prob [s wins] p̂t (TXst)

+ Prob [t wins] p̂s (TXts)

A noder receives a packet from a sender when it sends, either
alone or in combination with other nodes, depending on the asso-
ciated delivery probability. The fraction of timer receives froms

andt when both nodes attempt to transmit continually is then:

Frac [r receives s] =Frac [s sends alone] p̂r(RXsr)

+ Frac [s, t send] p̂r(RXt
sr)

Frac [r receives t] =Frac [t sends alone] p̂r(RXtr) (18)

+ Frac [s, t send] p̂r(RXs
tr)

We can then use these fractions to compute other performance
metrics of interest. For example, the delivery probability froms to
r isFrac [r receives s] divided by the sum ofFrac [s sends alone]
andFrac [s, t send]. Similarly, throughput is the product of the ca-
pacity of the channel andFrac [r receives s].

4.6 Summary
We have derived two PHY models for reception and deferral by

combining measurements with an adaptation of the classic SINR
model. The inputs required by our PHY models are listed in Ta-
ble 1. They use an RF profile that is measured by having each node
send by itself and observing the RSSs and delivery probability of
packets received at other nodes. At each receiver, this gives an av-
erage RSS for each sender, an RSS to delivery probability curve
across senders, and the average external interference as the varia-
tion in RSSs from the same sender. This requiresN trials, one for
each sender in anN node network, and results inN − 1 tuples at
each receiver.

Given the single-sender RF profile and hardware constants, the
PHY receiver and PHY deferral models (Equations 10 and 15) then
predict the likelihood of reception and deferrals in the same net-
work when multiple nodes send at once. These likelihoods are fed
into higher-layer MAC and traffic models that complete the rest of
the system under study. MAC models fold in higher-layer protocol

behavior, and traffic models specify the workload placed on the net-
work. We have given closed-form equations for the simple system
of two sender broadcast with CSMA/CA. The output of the MAC
and traffic models is a prediction of the performance of the system.

5. MODEL EVALUATION
In this section, we test an instantiation of our models on our wire-

less testbed, to show that the predictions are accurate enough to be
useful, despite the inherent variability of a wireless environment
and the inaccuracies of measuring it using commodity hardware.
We evaluate both overall and component prediction accuracy, and
show how our models can be applied, by using them to infer con-
flict graphs.

Instantiation of the Model As input to the PHY models, we
gather the RF profile of our network by having nodes take turns to
broadcast large (1084 bytes) packets for two minutes each. While
one node sends, the rest log packets and their observed RSSs. This
takes O(N ) time and gathersO(N2) parameters for anN -node
network. To filter out any atypical events, we conduct three such
rounds, separated by roughly 4 hours, and use the median values as
input to the model. This data gives usR̄sr, Īr, andp̂(R̄sr) directly.
As mentioned in Section 4, such data could potentially be derived
from application traffic in a deployed network.

To obtain the RSS versus delivery functionp̂(.) for each receiver,
we simply piecewise linear interpolate the measured delivery prob-
ability and mean RSS pairs that were observed from each of the
other senders. The other PHY model parameters depend on the
card and driver, and can be computed once per type of radio; they
could also be supplied by the manufacturer. Atheros cards report
a constant noise floorn of -95 dBm. To approximate the SINR
thresholdδ for our Atheros cards, we use our attenuator experi-
ments, where interference is near zero andδ is thusS

n
. The knee of

the delivery curve in Figure 2 gives the value ofδ as 2.5 dB. For the
CCA thresholdβ, we first measure the deferral probability between
each pair of senders, as described in Section 5.3. We then plot the
deferral probability between all sender pairs against RSS. The knee
of the curve represents the threshold above which the radios in our
testbed defer. Our results yield aβ of -81 dBm.

The other parameter we need is for our MAC model. For window
sizeW in Equation 16, we use 802.11 standard values of 16 for
802.11a and 32 for 802.11b.

Experimental Methodology We use the closed-form expres-
sions for a two sender broadcast CSMA/CA system given in Sec-
tion 4.5 to evaluate our PHY models. These expressions predict
the throughput and delivery probability at a third receiver when
two senders compete to send packets. Because there are a large
number of possible pairs of senders, we select a subset of 12 pairs
that are representative of senders with high (i.e., over 80%), mid-
dle, and low (i.e., under 5%) delivery probabilities to each other;
each pair is used to make predictions to 14 possible receivers.5 The

5Node 5 in Figure 1 was excluded due to a hardware problem.



two-sender measurements are taken over three separate rounds, in-
terleaved with RF profile collection. The entire experiment, in-
cluding single and two sender measurements for both 802.11a and
802.11b, took approximately 12 hours to run. We compare our pre-
dictions to values observed in each of these instances, aggregated
over the three rounds. After removing uninteresting cases where
the receiver is out of range of both senders, we make a total of 528
predictions for 802.11a and 828 predictions for 802.11b.

Other MAC models and traffic mixes are clearly of interest, but
we leave experiments with them for future work. The number of
multiple sender experiments is combinatorial, and two senders are
the most important base case for interference effects. We also use a
bitrate of 6 Mbps for 802.11a and 1 Mbps for 802.11b; our current
experiments do not explore variations in transmission bit rate or
packet size.

We judge the accuracy of our predictions by comparing them to
actual two-sender measurements. To put these results in context,
we compare them with results for two other models. The first is a
naivemodel that optimistically ignores the presence of the second
sender, assuming it will not affect either the first sender or the re-
ceiver. This model predicts that the outcome of the two-sender case
will be the same as that of the single-sender case. The compari-
son against this model lets us quantify the advantage of explicitly
modeling interference after having seeded the model with measure-
ments. It is worth noting that even this naive model is likely to out-
perform many existing analytic models, as it incorporates measured
information about signal propagation.

The second model is based onhistory. It predicts the current
round using the corresponding, direct measurements made in the
last round. This model cannot be used to predict network configu-
rations which have not been previously recorded; instead, it quan-
tifies the temporal variability inherent in the wireless network. All
models other than those that predict changes in the RF environment
itself are likely to be no more accurate than this model. Compar-
ison here lets us isolate the impact of modeling inaccuracies from
the impact of temporal variability.

To present our results, we use the root mean square error (RMSE)
as a measure of the accuracy of predictions. This is a standard
metric in model fitting that conveys how far off a given prediction is
likely to be. We give RMSE values as percentages of the maximum
possible value for that prediction. For probability predictions, the
maximum is 1. For throughput predictions, the maximum is the
bitrate: 6 Mbps for 802.11a and 1 Mbps for 802.11b. For brevity,
we adopt the convention of listing 802.11a and 802.11b accuracy
numbers side by side (e.g.,xa / xb %).

5.1 Overall Accuracy
We evaluate the overall accuracy of our models by comparing

the two-sender throughput and delivery probability predictions with
measured values.

Throughput Prediction Figure 8 plots the CDF of the error in
predicting throughput for each two-sender and receiver trial. The
error is measured as the difference between predicted and actual
throughputs. For an ideal model, the graph would show a vertical
transition from 0% to 100% at thex-value of 0. We see that most of
our model predictions are accurate, though a small portion are too
low (at the left end) or too high. The naive model does worse, and
in particular it often overestimates throughput by a large margin by
not accounting for interference from other senders.

The RMSEs for the throughput predictions of our model are
11 / 9% for 802.11a/b. The RMSEs of the naive model are sub-
stantially higher, at 24 / 31% for 802.11 a/b; 802.11b fares worse
because there is more interference due to its longer range. Surpris-
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Figure 8: The CDF of error in predicting throughput.
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Figure 9: The CDF of error in predicting throughput for the
naive model, broken down by the sender range. There are no
middle range senders for 802.11a in our testbed.

ingly, our accuracy is similar to that of the history based model,
whose RMSEs for 802.11 a/b are 11 / 7%. This suggests that the
accuracy of our model might be limited more by temporal variabil-
ity inherent in a wireless network, rather than modeling inaccura-
cies. Nonetheless, we believe this accuracy level to be sufficient for
many scenarios of interest, such as conflict graph prediction (Sec-
tion 5.4).

To further understand the performance of our model, we looked
for patterns in the cases where our predictions were poor. We found
that the most challenging case was that of receivers listening to
senders that can only partially hear each other. In these cases, the
delivery and deferral probabilities are both highly variable, leading
to throughput values that are very sensitive to small changes. How-
ever, these same factors affect the variability between successive
rounds as well, such that any model will be partly impaired in this
region unless it predicts the variability itself.

We further investigate where our predictions of interference are
most beneficial. Figure 9 shows the results of the naive model
throughput predictions, broken down by the range between the senders
(as determined using delivery probabilities from the RF profile).
We can see that the naive model does poorly at predicting middle
range senders, due to the high variability mentioned above and the
high potential for interference at a receiver. It does worst for close
sender throughputs, as it does not account for deferrals. The RM-
SEs for 802.11 a/b are 37 / 32% for close senders and 19 / 25%
for far senders. For 802.11b middle range senders, the RMSE is
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Figure 10: The CDF of error in predicting delivery probability.
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Figure 11: The CDF of error in predicting delivery probability
for the naive model, broken down by the sender range. There are
no middle range senders for 802.11a in our testbed.

36%; because of 802.11a’s shorter effective range, we had no mid-
dle range senders in 802.11a. By comparing against our model
results in Figure 8, we can see the substantial gains possible when
accounting for interference and deferrals in predictions.

Delivery Probability Prediction Figure 10 shows a simi-
lar CDF of prediction error when delivery probabilities are com-
pared. We see results for our model that are very similar to those of
throughput, even though the two quantities may be quite different,
e.g., two senders may halve their throughput by competing with lit-
tle change in delivery probability if they sense each other clearly.
We see that our model is again comparable to the history based
model; the RMSEs of our model are 11 / 10%, while those of the
history based model are 12 / 10%.

The naive model again overpredicts scenarios with interference,
but its delivery probability predictions are not as poor as for through-
put, because deferrals between senders are irrelevant here. Overall,
its RMSEs are 19 / 29% for 802.11 a/b. Figure 11 confirms that the
naive model does better at delivery probability than throughput for
close senders, though it continues to neglect the impact of interfer-
ence from senders that do not hear each other well. The RMSEs are
10 / 8% for close senders and 21 / 27% for far senders. For 802.11b
middle range senders, the RMSE is 38%.

5.2 PHY Receiver Component
To evaluate the individual components of our model, we now

look at them separately. The receiver component of our model pre-
dicts the fraction of packets a node will receive from a sender, in the
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Figure 12: The CDF of error in predicting delivery probability
for the receiver component.

face of simultaneous transmissions from another sender. To study
this component in isolation, we first identify those triplets (consist-
ing of a pair of senders and a receiver) that will actively test this
component. In such triplets, the two senders are sufficiently far
from each other that they transmit simultaneously, rather than de-
ferring to each other, and the receiver can hear packets from both
senders, at least partially. This second condition filters out cases
where one of the senders is so far as to not make a difference. For
802.11 a/b, there are 12 / 30 such triplets in our dataset, implying
that we test our model on 24 / 60 predictions. To ensure that our
predictions here are not influenced by errors in the deferral compo-
nent of our model, we use the measured, not predicted, number of
packets sent by each of the senders.

Figure 12 shows the CDF of prediction error for delivery prob-
ability for all models. We see a stark difference from the ear-
lier CDFs, since we are focusing on only those cases where in-
terference is present. The RMSEs of our model remain low at
12 / 18% for 802.11 a/b, comparable to the history model RM-
SEs of 18 / 11%. The RMSEs for the naive model are consider-
ably poorer at 67 / 60%. These results imply that our model is
quite effective at both predicting situations when effects such as
capture [13] arise and quantifying their impact.

5.3 PHY Deferral Component
We now evaluate our deferral component in isolation. The key

metric here is the accuracy of the predicted probability of one sender
deferring to another. We compare the predicted deferral probabil-
ity to the measured deferral probability. The latter is computed
using the packet transmission counts from each sender taken from
the two-sender (validation) runs. Assume that the two senders,s

andt, sendPs andPt packets when sending simultaneously, and
that there are a total ofP opportunities to send packets. The dif-
ference for each node, i.e.,P − Ps, is the number of packets that
were deferred. Even if the senders hear each other perfectly, we
will observe nodes sending slightly more than half the time be-
cause of collisions due to ties in the backoff race. We know from
our analysis in Section 4.5 that the number of expected collisions,
C, is 2

16
P for 802.11a and2

32
P for 802.11b. Nodes are equally

likely to win the countdown race and use the remaining opportuni-
ties. Thus, with perfect deferrals they deferP−C

2
packets to each

other and send a minimum ofP−C

2
+C packets. When the senders

cannot hear each other, they never defer and send a maximum of
P packets. The observed deferral probability is then the number of
deferrals as a fraction of the maximum possible. That is:
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Figure 13: The CDF of error in predicting deferral probability.

Prob [s defers] =
2(P − Ps)

P − C

Figure 13 shows the CDF of deferral probability prediction error.
The RMSEs for our model in 802.11 a/b are 23 / 19%. The RMSEs
for the naive model are 52 / 54%, while those for the history based
model are 0 / 8%. We see that the errors for our predictions are
higher than that of the history model but notably lower than those
of the naive model, which predicts senders will never defer. (We
found another naive model in which senders always defer to be
even less accurate; senders clearly do defer to each other but only
in particular cases.)

We do less well at predicting deferrals than predicting packet
delivery. One possible cause is that the RSS versus delivery prob-
ability data used for interpolation is sparse and variable. To ex-
plore how much impact this has, we experimented by heuristically
smoothing the RSS data in the RF profile. We did this by removing
outlier points, then making the function monotonic increasing and
ensuring that it reaches 100% delivery at a reasonable RSS. The
result was to lower the RMSEs for our deferral probability predic-
tions to 3 / 17% for 802.11 a/b, and slightly lower the RMSEs for
our overall throughput predictions to 8 / 8%. This is promising, as
it suggests that better modeling of the RSS relationship can further
improve our results.

As a second possible cause, we observe slightly lower RSS mea-
surements when a node is attempting to send as it listens, compared
to when it only listens. We have not yet included this effect in our
models.

5.4 Application: Conflict Graphs
We see our model as a foundation on which to predict the perfor-

mance of a wide range of higher-layer behaviors. To illustrate its
versatility, we show a simple application in which we predict the
conflict graph[10] of the network. This graph captures the level of
interference between different unicast conversations. It is of broad
interest because knowledge of the conflicts can be used to improve
performance, e.g., by using non-interfering links in parallel, rather
than making overly conservative scheduling decisions in the man-
ner of 802.11 CSMA/CS and RTS/CTS.

Padhyeet al. quantify conflicts using link interference ratios
(LIR) between two unicast conversations as a metric. LIR is the
ratio of the sum of throughputs when both conversations are ac-
tive to the sum when they are active individually. It thus ranges
from 0 to 1, with 1 representing no interference. Because LIR is
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Figure 14: The CDF of error in predicting BIR.

intractable in networks with many conversations due to the large
number of combinations, Padhyeet al. show that it can be esti-
mated using a broadcast interference ratio (BIR) [17] that requires
fewer trials. BIR is the ratio of the sum of packet delivery probabil-
ities at respective receivers when both senders broadcast to when
they broadcast individually.

We use our models topredict BIR as a proxy for the level of
unicast interference. We do this simply by making delivery prob-
ability predictions for two-sender cases and combining them with
single-sender data according to the BIR metric. Figure 14 shows
that our model does well at this task. It plots the CDF of the differ-
ence between predicted and measured BIR, where measured BIR
is obtained by using our two-sender experiments. For 802.11 a/b,
RMSEs of our predictions are 14 / 10%. Both the CDFs and RM-
SEs indicate that we are quite close to the actual BIR on average.

Observe that the use of our model provides a substantial advan-
tage: we require onlyN single-sender trials in anN node network
to estimate BIR; measuring it directly requiresN2 trials, one for
each pair of senders. In contrast, direct measurement of the con-
flict graph as LIR for pairs of conversations would have required
roughlyN4 trials! Our method also generalizes easily to more con-
versations without additional measurements.

6. RELATED WORK
Much work on modeling wireless networks has relied on sim-

ple assumptions about signal propagation and interference [9, 19].
While such models provide important insight into the asymptotic
behavior of large networks, the use of such models in real networks
has been shown to be erroneous [14]. Our approach is fundamen-
tally different: it is grounded in measurements of real networks to
avoid simplistic assumptions about signal propagation.

There is relatively little work combining measurements with mod-
els. Padhyeet al. [17] estimate the extent of interference between
two unicast conversations with measurements of broadcast inter-
ference. Our model tackles a more general, and challenging, case
for prediction. Wooet al. [20] uses measurements to construct link
quality estimators in sensor networks. Similar to us, they find that
measurements add significantly to realism, though they do not ex-
plicitly model effects such as interference. Cerpaet al.[7] present a
tool for assessing connectivity in lossy environments. It is based on
packet delivery statistics, rather than underlying causal models, and
does not attempt to model packet delivery in new configurations.
Also, Judd and Steenkiste emulate signal propagation in hardware
to provide a tool for experimenting with wireless networks [12].
They notably improve realism and repeatability, but unlike predic-
tive models they must evaluate each configuration of interest exper-
imentally.



Other studies have characterized aspects of wireless behavior in
practice for particular settings, e.g., the Roofnet project has investi-
gated characteristics of packet loss, connectivity and throughput on
a city-scale wireless network [3, 5]; work on Divert measures the
burstiness and spatial patterns of losses on an indoor [16]; and work
on SCALE includes an assessment of wireless conditions in sensor
networks [7]. Our characterization work is largely complementary
but consistent with the findings in these other studies.

Finally, some recent efforts have been made to use empirical ob-
servations to improve wireless protocols. Divert [16] attempts to
reduce packet loss rates in WLAN systems by rapidly switching
between APs to tolerate bursty losses. ExOR [6] leverages spa-
tial loss independence to reduce packet transmissions in multi-hop
networks by using opportunistic packet reception. These efforts in-
dicate that there is much room to improve wireless protocols by
adapting them to realistic conditions. Our work provides one tool
to do so.

7. CONCLUSIONS
We present practical, measurement-based models for the phys-

ical layer behaviors of static wireless networks, including packet
reception and carrier sense with interference. To improve accu-
racy over abstract RF propagation models, we seed our models
with measurements of RSS values and delivery probability, both
of which are easily obtainable. Our RF profile of a given network
topology includes data forN nodes fromN sequential transmis-
sion rounds, providing roughlyN2 data points. Our models can
then predict packet delivery and throughput at receivers in the same
network topology when multiple senders compete to transmit pack-
ets. This covers a much larger range of transmission configurations
than were measured; there areO(N3) configurations when at most
two nodes send at once. We evaluate our model for the base case
of two senders that continually transmit broadcast packets, and find
that it can accurately predict when there will be significant inter-
ference effects. Across many predictions, we obtain an RMS error
for 802.11a and 802.11b of a half and a third, respectively, of a
measurement-based model that ignores interference.

There is clearly much more work to be done to achieve our long-
term goal of predicting the performance of a given network when
it is used in a different configuration, for instance, with different
routing, MAC and PHY design choices. Thus far we have evalu-
ated our model for two simultaneous broadcast senders, the base
case in which interference effects are seen, and not tested its accu-
racy across the much larger space of possible workloads. In future
work we hope to extend our methodology in these directions; this
would greatly increase the design space in which we can apply our
models.

On the other hand, we view the importance of our work as being
able to predict interference effects with any reasonable accuracy at
all. Wireless networks are notorious for their variability and com-
plex interactions. The tone of much work is that there is little rhyme
or reason to the performance that will be achieved in practice for a
given setting. We have shown that, to the contrary, measurements
do have predictive power when they are carefully interpreted. We
have shown how to measure an RF profile of a network to factor the
complexity of RF propagation out of the modeling domain, so that
RSS values averaged over tens of seconds can be useful predictors
of performance for the majority of the time and well into the future.

We hope our work will provide a starting point for new method-
ologies and protocols as measurement-based prediction is improved
in scope and accuracy. Measured RF profiles may be combined
with simulators via our models to allow the realistic exploration
of networks. New protocols can then account for interference by

using online models, rather than “playing safe” with overly pes-
simistic assumptions, as does 802.11 [8, 18].
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