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Abstract

Despite their popularity, modern web browsers do not
offer a secure or robust environment for interacting
with untrusted content. Today’s web users face a
variety of threats, including exploits of browser vul-
nerabilities, interference between web sites, script in-
jection attacks, and abuse of authentication creden-
tials. To address these threats, I leverage an anal-
ogy between operating systems and web browsers,
as both must run independent programs from multi-
ple sources. My hypothesis is that mechanisms from
OS research can improve the security and robustness
of modern web browsers. In this report, I propose
abstractions and mechanisms to isolate independent
web content within the browser, and I propose two
separate interposition techniques to support flexible
security policies. Combined, these contributions can
improve the safety of web browsers, while preserving
backwards compatibility and imposing low overhead.

1 Introduction

Web browsers have become required applications for
millions of people, who use them daily to interact
with a mix of privacy-critical and untrustworthy con-
tent. Web browsers have also experienced a ma-
jor shift in functionality over the past decade, from
simple document renderers to complex runtime en-
vironments for code from the web. Because of this
combination of trusted and untrusted active input,
the security and robustness of web browsers are is-
sues of great importance. Unfortunately, these issues
have been addressed incompletely as browsers have
evolved. As a result, modern browsers have inad-
equate security policies and implicit boundaries for
isolating content. This leaves them vulnerable to a
variety of threats. In this report, I show how ideas
from operating systems research can be applied to
the runtime environments of browsers, and I show
how such ideas can concretely improve the security
and robustness of modern web browsers.

Security and robustness problems in current
browsers are manifested in a wide variety of threats.
I consider four categories of threats in particular,
though I discuss additional threats in Section 2.
First, implementation flaws in web browsers are fre-
quently discovered, and these flaws can often be
exploited by malicious web sites to run arbitrary
code on client machines. Browser developers must
quickly defend users from such exploits, because mal-
ware authors frequently target browser vulnerabili-
ties [41, 55]. Second, code from many different hosts
can run concurrently in the browser, contending for
resources like CPU and memory. Current browsers
are not robust to this resource contention, resulting
in interference and poor failure isolation between web
sites. Third, script injection or “cross-site scripting”
(XSS) attacks have become widespread [7], allowing
adversaries to steal private information or disrupt
trusted web content. The complexity of web con-
tent and browser implementations have made these
attacks difficult to prevent. Fourth, “cross-site re-
quest forgery” (CSRF) attacks allow an untrusted
site to abuse a user’s credentials on another site. Ad-
versaries can then perform damaging actions in the
user’s name.

Many of these threats are exacerbated by the com-
plexity of modern browsers and their policies. For
example, most browsers tolerate malformed input,
making it difficult to filter attacks that might succeed
despite appearing malformed. Browsers also have in-
consistent isolation policies for many resources, in-
cluding cookies, cached objects, scripts from third
parties, and communication requests. This results
in unexpected vulnerabilities, such as opportunities
to covertly track users [3, 28]. These inconsistencies
also make it difficult to isolate the effects of visiting
a given web site. Unfortunately, current trends are
leading to further inconsistencies. Browser plugins
for new “rich” content types are becoming more pop-
ular (e.g., Flash and Silverlight [39]), and each has its
own security policies. Overall, these inconsistencies
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and complexity present large challenges for reasoning
about browser security.

To address the current threats, I leverage an anal-
ogy between modern web browsers and operating sys-
tems. Both are tasked with running independent
code from different sources, while offering a reliable
and secure platform. Indeed, many of the above
threats have analogs at the OS level. OS vulnera-
bilities must be patched quickly to protect the sys-
tem. Resource contention and interference between
user programs posed a problem in early desktop op-
erating systems, such as MS-DOS and Mac OS. Tro-
jan horses and code injection attacks are similar to
XSS attacks, and CSRF attacks are instances of the
“confused deputy” problem observed for OS protec-
tion mechanisms [22]. OS researchers have explored
many ways to defend systems from these threats, yet
relatively few of their ideas have taken root in web
browsers.

My hypothesis is that mechanisms from operat-
ing systems research can be applied to modern web
browsers to demonstrably improve their security and
robustness. To show this, I will incorporate analogs of
OS isolation and interposition mechanisms into web
browsers. The likely contributions of this work in-
clude the following:

• A set of abstractions for decomposing the
browser and isolating content from different web
sites.

• Isolation mechanisms that prevent interference
between these abstractions, both in terms of
resource contention and authentication creden-
tials.

• A code rewriting framework that allows admin-
istrators to enforce flexible policies on untrusted
web content.

• An interposition layer in the browser that sup-
ports extensible security policies, independent of
the type of content or the use of browser exten-
sions.

• A set of security policies that leverage interposi-
tion to defend against browser security threats,
such as exploitable vulnerabilities and XSS at-
tacks.

I will show how these contributions defend against
current threats to web browsers, preserve backwards
compatibility, and impose low performance overhead.
The contributions will provide explicit boundaries
that allow users to have multiple independent brows-
ing sessions in a single browser. They will also pro-
vide extension points within the browser, as a plat-
form for future web security research.

The remainder of this paper is organized as follows.
Section 2 discusses related work, including founda-
tional operating systems research, relevant browser
security work, and related web concerns. I present
preliminary work supporting my hypothesis in Sec-
tion 3. I describe my proposals in Section 4, outlining
additional work to improve browser security and ro-
bustness. I discuss how I will evaluate the proposed
work in Section 5, and I present conclusions and di-
rections for future work in Section 6.

2 Related Work

This section explores foundational OS research that
is relevant for modern web browsers, as they have
evolved into runtime environments for untrusted
code. Web security has recently become a hot topic in
its own right, and this section also places my proposal
in context with directly related browser research and
other relevant concerns for web users and developers.

2.1 Foundational Work

I first discuss foundational work in security and ro-
bustness for operating systems and language runtime
environments. I focus on the topics of isolation and
interposition, showing how OS research on these top-
ics is relevant to my proposed hypothesis.

Isolation and Confinement On any multipro-
cessing system, the isolation of independent programs
is important to prevent unwanted interference. For
traditional operating systems, the process abstraction
has long offered a mechanism for isolating indepen-
dent programs. Modern OS processes feature sepa-
rate address spaces and concurrency, along with tools
for resource management and accounting. These at-
tractive properties have led to research that incor-
porates process-like abstractions into other runtime
environments as well, such as Java [5, 30]. My work
finds that browsers are hampered by a lack of process-
like isolation for web content, and I propose using OS
processes to prevent unwanted interactions between
such content.

Process-based isolation can come at a cost, how-
ever, due to the high overhead for inter-process com-
munication. As a result, many researchers have in-
vestigated lightweight fault domains to allow intra-
process isolation [51, 13, 12, 49]. For example,
SFI [51] provides memory safety by confining un-
trusted code in sandboxes, while Asbestos [12] offers
isolated event processes within an OS process. Such
approaches often trade slight overhead in the common
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case for substantially faster cross-domain communi-
cation. It is not yet clear whether such a tradeoff is
worthwhile in web browsers. If so, lightweight fault
domains may offer an alternative to process-based iso-
lation in the browser.

Lampson discusses more general concerns for con-
fining untrusted code, including explicit and covert
channels for communication [36]. In practice, it may
be difficult to enumerate all such channels, and while
many are well-known for web browsers (e.g., network
communication or cache timing [16]), others are still
being discovered (e.g., visited link history [28]). In
confining untrusted web content, I aim to provide
effective isolation of explicit communication chan-
nels while supporting existing proposals for blocking
known covert channels [16, 28].

Closer to the web, Borenstein [6] and Ousterhout
et al. [42] explore the design of Safe-Tcl for support-
ing untrusted code in email messages. Safe-Tcl con-
fines scripts using two interpreters that are analogous
to kernel and user levels in the OS. Notably, it of-
fers an easy way to extend the abilities of particular
scripts on the fly. While scripted email has not be-
come popular, JavaScript has filled a similar role for
the web. However, JavaScript is confined by a fixed
and complex security policy, which has evolved over
time and applies to various browser resources in dif-
ferent ways. Like Safe-Tcl, I aim to provide a cleaner
interface for confining scripts and other active web
content in an extensible way.

Interposition and Filtering Interposition is a
fundamental tool in operating system design: using a
level of indirection to allow or deny access to particu-
lar resources, based on a policy. OS protection mech-
anisms are perhaps the most basic example, interpos-
ing on resources such as the filesystem or network.
Saltzer and Schroeder outline basic principles of pro-
tection [45], including design principles and mecha-
nisms such as ACLs and capabilities. Unsurprisingly,
many of their concepts translate directly to browsers
and web content. Interposing between web content
and the browser can support flexible security policies
to govern the content’s behavior.

The need for extensible security policies in sys-
tems is well recognized. At the OS level, system call
interposition can enforce policies to restrict the be-
havior of untrusted programs. For example, Janus
intercepts particular system calls with policy mod-
ules [20]. These modules abstract away the specific
filtering that must be done for each system call, al-
lowing policy authors to focus on higher level abstrac-
tions like filesystem paths. Garfinkel identifies chal-
lenges in interposing on OS behavior with a filtering

approach [18], and he proposes a delegation architec-
ture to avoid these pitfalls [19]. Nooks [49] takes a
different approach, using wrapper code to interpose
on calls between the kernel and its extensions. These
various mechanisms are attractive for web browsers,
to support configurable security policies on web con-
tent. I explore browser analogs to system call inter-
position in Section 4.2.

At a higher level than the OS, Wallach et al. ex-
plore extensible security architectures for Java [53].
They discuss interposition mechanisms for the JVM
that enforce flexible policies on untrusted code. Their
work supports such policies for Java applets in web
browsers, but it does not apply to resources within
the browser itself, such as the Document Object
Model (DOM). I propose an extensible security archi-
tecture within the browser, independent of the type
of active content. In this way, policies can apply uni-
formly to all types of content, including JavaScript,
Java applets, Flash, and newer formats such as Sil-
verlight [39].

Interposing at the level of program code can also
be attractive, as it requires no changes to the under-
lying platform [14, 15]. For example, Erlingsson and
Schneider use code rewriting to support inline refer-
ence monitors [14]. These monitors enforce extensible
security policies within the code of an untrusted ap-
plication. I leverage similar techniques for web con-
tent, since this content can often be rewritten before
reaching the browser.

Shield [54] uses a filtering technique related to in-
terposition, intercepting network packets bound for
an application. Shield filters this traffic for ex-
ploits of known vulnerabilities. Shield’s network-
based approach shares deployment advantages with
code rewriting, as neither requires changes to the un-
derlying platform. Web content can also be filtered in
such a way, but because web content can include exe-
cutable code, the Shield approach must be combined
with code rewriting to be effective on the web.

2.2 Browser Security

More recent work offers directly relevant proposals
to address threats for web browsers. These include
efforts to better isolate web content from different
sources, handle malware on the web, mitigate script
injection attacks, and limit abuses of client authenti-
cation. My proposed work will build on these efforts,
offering more comprehensive isolation and interposi-
tion mechanisms for the web browser as an applica-
tion platform.
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Isolation of Web Content Tahoma isolates web
applications on the client, both from each other and
from the client’s operating system [8]. It uses sepa-
rate virtual machines (VMs) for each web applica-
tion, running an independent browser instance for
each. These instances are managed using a “browser
operating system” (BOS): a common software layer
outside the browser. The BOS can confine web ap-
plications based on their self-provided manifest files.

Like Tahoma, my work aims to isolate indepen-
dent web content to prevent interference. However,
our assumptions differ: unlike Tahoma, I treat the
browser as trusted software. I argue this is neces-
sary: as the runtime environment for web content,
the browser must be trusted not to falsify content or
abuse the user’s credentials. Instead of fully sand-
boxing the entire browser, I aim to isolate web con-
tent within the browser. By trusting the browser, I
can leverage lighter-weight isolation mechanisms than
Tahoma, such as processes. To protect the underlying
OS from exploits of browser flaws, I propose vulner-
ability filtering techniques similar to Shield [54].

Compared with Tahoma, I also place greater em-
phasis on backwards compatibility. Tahoma requires
manifest files that specify confinement policies for
each web site. These manifests would need to be
deployed or inferred, both of which would be difficult
for many reasons. Web sites may have little incen-
tive to confine their own content with manifests, and
inferring confinement policies is difficult from outside
the browser. For example, the BOS would be un-
able to distinguish between HTTP requests for web
pages from those for XML data, but these request
types should be subject to different security policies.
Tahoma also places a greater burden on the user to
manage and understand the manifest for each web
application before approving it. In contrast, I aim
to isolate web content without requiring manifests or
other changes to web sites, and without placing new
management burdens on the user. These goals can be
accomplished with new isolation abstractions within
the browser itself.

Other work addresses isolation within the browser.
Anupam and Mayer discuss vulnerabilities that re-
sult from poorly defined JavaScript security policies,
and they offer a more formal model of how browsers,
scripts, and interpreters should interact [3]. Their
model describes when objects should be isolated or
shared between contexts. I concur that browsers de-
mand thorough isolation and security policies, but I
propose them at a deeper level than the scripting en-
gine. Instead, I offer process-based isolation between
carefully defined abstractions within the browser, and
I propose an interposition layer to enforce policies at

the level of the DOM. As a result, policies can be ap-
plied uniformly to JavaScript code and other forms
of web content.

As browsers have evolved into environments for ex-
ecuting code, researchers have proposed other refine-
ments to the isolation of web content. For example,
the discoveries of cache timing attacks and other stor-
age channels [16, 28] have led researchers to extend
the “same-origin” policy of current browsers [44] to
a broader set of resources. I support these proposals,
and I aim to incorporate such isolation between con-
tent without losing backwards compatibility. I also
hope to offer a flexible architecture to better support
such research in the future.

Drive-by Downloads Researchers have observed
a large number of pages on the web that perform
“drive-by downloads,” installing malware by exploit-
ing browser vulnerabilities [41, 55]. A wide range of
defenses have been explored for this problem. Strider
HoneyMonkey uses data about offending sites to pur-
sue legal action and blacklists [55], while SpyProxy
tests content in a VM for safety before sending it to
the client [40]. Tahoma instead sandboxes the entire
browser in a VM to contain any damage from mal-
ware [8]. In contrast, I explore vulnerability-specific
filtering similar to Shield [54]. This technique cannot
block zero-day exploits, but it can efficiently block
all exploits of known browser vulnerabilities before
patches are applied.

Script Injection Script injection (also known as
XSS) attacks occur when adversaries place script
code on an otherwise trusted web site. This script
code runs when users visit the page, allowing adver-
saries to steal the users’ cookies or private data, ar-
bitrarily modify the victim web site, or launch dis-
tributed denial of service attacks against servers of
their choice [21]. Web developers must carefully san-
itize any input they receive from users, to prevent
such scripts from appearing on their page. Unfor-
tunately, comprehensively filtering script code from
user input is a non-trivial problem, as demonstrated
by the success of the Samy and Yamanner worms on
MySpace and Yahoo Mail [1, 4].

Many server-side techniques have been proposed
to block XSS attacks [47, 25, 26, 57], requiring each
web site to carefully protect itself. Some client-side
proposals attempt to mitigate the damage of XSS at-
tacks, such as taint analysis in the browser [50] and
proxies or firewalls for blocking certain attack behav-
ior [27, 34]. These techniques are generally fail-open,
where false negatives allow an attack to succeed. In
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my preliminary work, I propose a whitelist mecha-
nism that offers a fail-closed solution. Concurrent
work on BEEP proposed a similar mechanism [31].
While whitelists require changes to both web sites
and browsers to achieve protection, they are back-
wards compatible with existing content and browsers.

Authentication Abuse Compared to XSS at-
tacks, cross-site request forgery (CSRF) attacks ex-
ploit a very different weakness in browsers. CSRF at-
tacks are an instance of the “confused deputy” prob-
lem [22]: an adversary fools the browser into abus-
ing the user’s credentials. For example, an adversary
may post an image to a public forum similar to the
following:

<img src="http://auction.com/

bid.cgi?item=12&price=150">

Any browser that visits the forum will automati-
cally request the above URL. If the user happens to
be logged into auction.com in another window, the
browser will send the user’s credentials (in the form
of a cookie) with the request, thus bidding on the
adversary’s chosen item. Unlike XSS attacks, this at-
tack does not require placing content on the target
web site.

Such attacks can succeed because browsers append
authentication information (e.g., cookies and HTTP
authentication credentials) on all requests to a given
site, regardless of the origin of the request. CSRF
attacks have been hypothesized for several years [56],
and many recent vulnerabilities have surfaced, includ-
ing ones affecting Netflix, Google Mail, and several
open source web applications [17, 52, 33].

Like XSS attacks, many proposed solutions for
CSRF require careful development practices on web
servers [46]. A typical defense requires fresh tokens
to accompany any authenticated request, to ensure
the request came from a freshly generated page in
the intended application. Jovanovic et al. propose a
server-side proxy to automate the inclusion of such
tokens [33]. On the other hand, client-side defenses
for CSRF attacks are attractive, as they do not re-
quire changes to all web servers. Johns and Win-
ter propose RequestRodeo [32], a client-side proxy
that identifies suspicious, or “unentitled,” requests
between sites and strips authentication information
from them. Subsequent requests to the site would
continue to include authentication information. How-
ever, this approach is likely confuse users on legiti-
mate links across sites: the first page view will not
be authenticated, but subsequent page views will be.
I propose a more principled and intuitive defense

against CSRF attacks within the browser, using the
session abstraction described in Section 4.1.

2.3 Related Web Concerns

Beyond the above topics of browser security, re-
searchers have explored related aspects of security
and robustness on the web. I offer a brief discussion
to place my proposed work in context.

Phishing Phishing has proven to be a significant
threat for web users. Phishing attacks lure users to a
malicious web site that is similar in appearance to a
trusted web site, for the purpose of harvesting private
information like credit card numbers or passwords.
Researchers have investigated phishing practices [11]
and proposed mechanisms to help users detect at-
tacks [10, 23]. For example, Dhamija and Tygar pro-
pose a mechanism that relies on users to match an
image in the browser’s user interface with an image
on a web page to ensure the page is not spoofed [10].
Like most phishing defenses (including those offered
by Tahoma [8] and Ye and Smith [58]), this work
relies on having trusted portions of the UI that at-
tackers cannot easily spoof.

While phishing attacks do pose a threat to web
users, I view them as largely outside the scope of
this work. My hypothesis addresses the system-level
guarantees that users should expect of the browser as
a runtime environment. Thus, I address phishing at-
tacks conducted via XSS attacks, since these attacks
violate the integrity of a legitimate page. However,
I do not address any disconnect between the site a
human believes he is visiting and the actual site he
visits, nor do I discuss using trusted portions of the
browser UI.

Server-side Security Many researchers have con-
sidered ways to improve the security of web applica-
tions on the server-side. Proposals include security
gateways for policy enforcement [47], fault injection
tools for testing [25], and static or dynamic analyses
to eliminate particular threats [26, 57]. For example,
Xie and Aiken suggest the use of static analysis of
PHP programs to prevent SQL injection attacks [57].
They rely on developers to define black box saniti-
zation functions, and their analysis can then track
which strings need to be sanitized. While they claim
the approach is amenable to XSS defense, the sani-
tization functions are much harder to implement for
blocking JavaScript (as shown by the Samy worm [1]).

I view server-side security for web applications as
complementary to my work. Clearly, web servers
must be carefully protected from security threats,
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and flaws on servers present a risk for their clients.
However, users cannot depend on all web sites to
uniformly follow best security practices. Thus, any
browser mechanisms to defuse attacks on the web
have great value from a user’s perspective. Improving
browser security is also appealing due to the relatively
small number of browser implementations to modify.

Cross-origin Communication In recent years,
“mashup” web sites have become increasingly pop-
ular. Mashups compose content and script code from
multiple hosts to provide a new and valuable service,
such as overlaying bus routes on a map service [48].
Unfortunately, current web developers must trade se-
curity for functionality when building such sites, be-
cause the same-origin policy prevents data communi-
cation between a mashup and the sites it composes.
Instead, mashups must either inefficiently proxy the
desired data through their own server, or execute re-
mote JavaScript files that provide the data (e.g., us-
ing JSON [2]). Malicious data providers could in-
clude arbitrary script code in such files, taking full
control of the mashup site. No controlled communi-
cation mechanisms for this task currently exist.

Recent proposals have sought to improve data ex-
change between partially trusted principals in the
browser. JSONRequest [9] offers a cross-origin RPC
primitive that sanitizes JSON data before using it.
Subspace [29] shows how to use embedded frames in
current browsers to share a JavaScript object between
otherwise isolated pages, allowing controlled commu-
nication at a slight setup cost. For a more princi-
pled approach, MashupOS [24] proposes abstractions
in the browser to isolate content while supporting
controlled communication and various trust relation-
ships.

My proposed isolation abstractions are similar in
purpose to those in MashupOS, but I focus on lower-
level resource management and authentication isola-
tion. There are important distinctions between the
abstractions I propose and those in MashupOS, but
the proposals are not necessarily incompatible. Sup-
porting both low-level isolation and effective commu-
nication models between web applications is a valu-
able direction for future work.

3 Preliminary Work

My preliminary work has taken promising steps to-
ward improving isolation and interposition in web
browsers, as well as leveraging interposition for new
security policies. I have isolated independent web
content in the browser with OS processes, which
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Rendering
Engine

User
Interface

A.com A.com B.com

Rendering
Engine

User
Interface

Rendering
Engine

Current Browsers Proposed Architecture

Figure 1: Current and proposed browser architec-
tures. Gray boxes indicate process boundaries.

prevents interference due to resource contention. I
have built a code rewriting framework to interpose
on JavaScript and HTML content, which can defend
browsers from exploits of known vulnerabilities. I
have also implemented a XSS defense mechanism,
which interposes on code passed to the browser’s
JavaScript engine. These efforts support my hypoth-
esis that web browser security and robustness can be
enhanced using mechanisms from OS research, with-
out sacrificing backwards compatibility. In this sec-
tion, I present strengths and weaknesses of these ef-
forts, to explore how they can be extended to confirm
my hypothesis.

3.1 Process-based Browser Isolation

Measurements of web content indicate a clear rise in
the amount and complexity of JavaScript code being
used on popular web sites. These sites are compet-
ing for resources like CPU and memory within the
browser, and current web browsers do a poor job of
isolating these sites from each other. Browser flaws
can also lead to crashes when visiting a web site, and
this can cause failures for many open web sites. I
have observed test pages in the lab and actual pages
on the web that trigger concrete problems, such as
unresponsiveness and browser crashes. As web con-
tent continues to grow in complexity, these problems
are likely to worsen.

My solution is to modify the web browser to iso-
late independent web sites from each other. In pre-
liminary work with my advisors, I separate docu-
ments based on the hostnames (i.e., second-level do-
main names, such as washington.edu) from which
they originate. This granularity is backwards com-
patible with the current same-origin policy in web
browsers [44], so that documents that communicate
via the DOM can continue to do so. I use OS pro-
cesses as an isolation mechanism, so that documents
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from different hostnames are rendered in separate
address spaces, as shown in Figure 1. To imple-
ment this, I built a prototype that places instances
of KDE’s KHTML rendering engine in separate pro-
cesses. It then maps their displays into the correct
windows, tabs, and frames of the Konqueror web
browser.

The primary strengths of this work are the extra
safety it provides for visiting web content from multi-
ple hosts, backwards compatibility with existing web
sites, and acceptable overhead for process-based iso-
lation. I have demonstrated that the prototype can
prevent content from one hostname from interfering
with other content, in ways such as rendering engine
crashes, unresponsiveness, and memory contention.
The current prototype has incomplete support for
cross-document communication, but it is otherwise
backwards compatible with the 100 most popular web
sites. I have also shown the overhead for starting
rendering engine processes and visiting pages to be
acceptably low.

However, the current work leaves room for im-
provement. The choice of hostname granularity for
isolating content is simple and intuitive, but it can
be further refined to protect users from additional
threats, as I discuss in Section 4. It is also important
to extend the prototype to support cross-document
communication, to demonstrate backwards compati-
bility and measure overhead on a wider collection of
real web sites. Such a performance evaluation should
also reveal whether OS processes impose undue over-
head for common browsing tasks, and thus whether
lightweight fault domains should be considered.

3.2 BrowserShield

As complex runtime environments, web browsers pe-
riodically have flaws that can be exploited by mali-
cious web sites. These flaws may allow adversaries
to run arbitrary code on visitor’s machines, present-
ing a critical threat to users. Browser developers
work quickly to provide patches for such vulnerabili-
ties when they are discovered, but these patches can
be delayed for many reasons, such as extensive testing
in enterprise environments.

With colleagues at Microsoft Research, I developed
an interposition framework called BrowserShield that
can enforce flexible security policies on web con-
tent [43]. These policies include vulnerability shields
that can be used to detect and block exploits of
known browser vulnerabilities, acting as a first line
of defense until patches are applied. BrowserShield
interposes on HTML and JavaScript content using

code rewriting. Policies are written in JavaScript and
provided to the framework to enforce.

BrowserShield has a number of key strengths. Be-
cause the framework is flexible and policy based,
it can be useful for many applications, from secu-
rity to comprehensive link rewriting. Our evaluation
shows that BrowserShield can provide defense for ac-
tual browser vulnerabilities. Additionally, because
BrowserShield operates on web content directly, no
changes to the browser itself are required. Instead,
the framework can be deployed in numerous ways,
including on client proxies, firewalls, or web servers.

BrowserShield faces a few drawbacks, however,
which may present challenges for effectively deploying
security policies. First, it must perfectly match the
tokenizing and parsing logic of the browsers it pro-
tects. This logic is complex, poorly specified, and dif-
ferent between browsers. As a result, attackers may
use malformed input to bypass BrowserShield’s fil-
ters and successfully run unfiltered code in a client’s
browser.1 Second, the fact that BrowserShield’s poli-
cies are expressed in JavaScript is both a strength
and a weakness. While this provides a familiar and
flexible way to specify policy logic, it offers only an
indirect way to express some desired policies. For
example, it is difficult to guard all the ways that
JavaScript can insert HTML into a document, and it
can be difficult to distinguish specific types of DOM
objects, because JavaScript lacks the notion of a class.
Third, BrowserShield currently only protects content
containing HTML or JavaScript. Other formats like
Flash also have access to the DOM, and they could
be used to evade BrowserShield’s policies. Some such
formats may not be amenable to code rewriting tech-
niques. Fourth, BrowserShield is unable to rewrite
content encrypted with SSL. Finally, BrowserShield
may face a prohibitive performance hurdle on pages
with substantial JavaScript code, since JavaScript is
a relatively slow language. The additional code in-
troduced by BrowserShield’s comprehensive rewriting
may cause such pages to run unacceptably slowly.

3.3 Script Whitelists

As an example of leveraging interposition to improve
security, I have modified Firefox to support script
whitelists as a defense against XSS attacks. As dis-
cussed in Section 2.2, most existing solutions to XSS
attacks are fail-open, allowing attacks to succeed if
the mechanism or policy is incomplete. Attackers
have proven capable of finding flaws in current de-
fenses, so a fail-closed defense is desirable.

1The Samy worm used this technique to bypass MySpace’s
JavaScript filters [1].
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Figure 2: Script whitelist architecture. Whitelists
can be added to static pages offline, and they can be
added to dynamic pages with an online tool that signs
scripts. Browsers check each script fragment against
the whitelist before running it.

My solution relies on web developers to pref-
ace each page with a comment containing a script
whitelist: a list of cryptographic digests of each script
fragment on the page. My modified build of Firefox
detects this comment if it is present, and it interposes
on all code strings passed to the browser’s JavaScript
engine. If the digest of a given fragment does not
appear in the whitelist, the browser does not run it.
Some extensions to this basic approach are necessary
to support real web sites in practice, such as pages for
which all script code may not be known in advance.
I support flags for blindly trusting code generated by
other scripts or from particular third parties, as well
as a signature mechanism for scripts that are gen-
erated after the page header has been sent to the
client. This architecture can support both static and
dynamic pages, as shown in Figure 2.

The main benefit of this work is that it gives web
developers a practical means to defend themselves
against script injection attacks. Regardless of how at-
tackers might find subtle ways to insert content into
the page, developers must only ensure the whitelist
is protected to prevent attack scripts from running.
While this approach requires modifications to both
web sites and browsers to prevent attacks, it is back-
wards compatible with existing browsers and sites.
Finally, the extensions to the basic whitelist architec-
ture ensure that whitelists can be effectively deployed
on real sites, as my tests with the phpBB application
demonstrate.

Unfortunately, the use of signatures for dynamic
scripts adversely impacts throughput on the server.
Also, presenting developers with an all-or-nothing

trust model for generated code and third party scripts
is unattractive in many cases. Building upon the
trust models proposed by MashupOS [24] may pro-
vide one valuable direction for future work. As a
final drawback, the prototype requires changes to the
Firefox source code and cannot be distributed as an
extension, making it more difficult to distribute.

4 Proposed Work

I propose to extend this preliminary work in two
directions: isolation and interposition. The pro-
posed work will resolve weaknesses in my preliminary
work and provide defenses against additional security
threats. It will support my principal hypothesis by
employing mechanisms from OS research to improve
the security and robustness of web browsers. It will
also preserve backwards compatibility with existing
web content and offer a flexible platform for future
web security research.

First, I will refine the boundaries for isolating web
content in the browser. From the current implicit
boundaries in the browser, I define two new isola-
tion abstractions: sessions and hosts. These abstrac-
tions allow users to treat a single web browser as if
it were multiple separate browsers. I further divide
the browser between user interface and runtime en-
vironment abstractions, and I propose using an inde-
pendent runtime environment for each session. The
process-based isolation from my preliminary work
will prevent unwanted interference between runtime
environments. In addition, the new session and host
abstractions will defend against CSRF attacks at nat-
ural boundaries.

Second, I will incorporate an interposition layer
within the browser itself, supporting BrowserShield-
like security policies for the browser’s runtime envi-
ronments. This layer will enforce policies at several
useful levels of abstraction, including at the levels
of HTML, the DOM, and JavaScript. Compared to
BrowserShield, this approach will interpose more con-
sistently on all web content regardless of format, and
it will reduce the overhead that accompanies code
rewriting. Importantly, the interposition layer will
act as an extensible security architecture for the en-
tire browser, serving as a platform for future security
research. It should allow new defense mechanisms
like script whitelists to be distributed as policies or
browser extensions rather than browser source code
modifications.

Together, these isolation and interposition propos-
als will complement each other. Policies may be uni-
versal to the browser or specific to a session, such that
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different policies may be applied to different browser
runtime environments. The proposed isolation be-
tween runtime environments provides natural bound-
aries for policies, creating a simple and flexible mech-
anism for enhancing browser security.

4.1 Isolation Abstractions

To refine my preliminary work on isolating web con-
tent within the browser, I note that many security
and robustness problems in current browsers could be
avoided if users ran multiple web browsers. Specifi-
cally, if a different browser were used for each in-
stance of each web site, many problems would go
away. Resource contention and fatal errors would be
handled by the OS and not the browser, which would
alleviate CPU contention between sites and isolate
crashes. CSRF attacks would be defeated, because
credentials from one browser would not be sent when
following a link in another browser. Users would gain
additional power as well, as they could log into the
same site with different accounts concurrently.

This literal approach is not generally feasible or at-
tractive because there are too few independent web
browsers for users to run, and because users expect a
consistent set of bookmarks, preferences, and plugins
across sites. Also, the naive approach of using a sep-
arate browser for each site instance is not desirable,
because some resources should be shared between in-
stances of the same site (e.g., cached objects).

My proposal captures the essence of using multi-
ple web browsers with only a single browser, while
clearly defining boundaries for isolating and shar-
ing browser resources. I propose four abstractions
within the web browser: user interface, runtime en-
vironment, host, and session. The web browser will
isolate resources and authentication information be-
tween these abstractions. Unlike current browsers, a
single web browser could then support multiple inde-
pendent browsing sessions.

User Interface and Runtime Environments
Most modern web browsers consist of two largely
disjoint sets of functionality: the browser’s user in-
terface and its HTML rendering engine. For exam-
ple, Firefox has a separate rendering engine called
Gecko, while KDE’s KHTML rendering engine is
used in both the Konqueror browser and Apple’s
Safari browser. The browser’s user interface con-
sists of features for navigating across sites and within
the browser’s history, specifying preferences, storing
bookmarks, and so on. In contrast, the rendering
engine is responsible for displaying each web site and
allowing users to interact with it. Because this engine

must also support JavaScript execution and plugins
like Flash and Java applets, I refer to the rendering
engine as the browser’s runtime environment. For
purposes of isolation, I will draw a clear boundary be-
tween user interface and runtime environment, allow-
ing a single user interface to support multiple inde-
pendent runtime environments. One challenge here is
how best to share certain resources, like preferences,
between the UI and each runtime environment.

Host Abstraction I propose a first-class host ab-
straction within the browser, which comprises all doc-
uments that originate from a given hostname. This
abstraction acts as a superset of the “origin” used
in the browser’s current same-origin policy [44], such
that any two documents that can currently commu-
nicate via the DOM must be part of the same host.2

This abstraction matches the granularity of
process-based isolation from my preliminary work.
In this proposal, however, the host abstraction will
correspond to a partition of storage in the browser,
rather than an individual process. Building upon the
privacy work of Jackson et al. [28], the host abstrac-
tion will consist of a partition of the browser’s cache,
visited link history, and certain cookies. The host ab-
straction is only used to partition persistent cookies,
which are those HTTP cookies for which the server
specifies an expiration date [35]. These cookies are
commonly used for remembering users and their pref-
erences, but typically not for authentication. In con-
trast, session cookies specify no expiration date and
are currently deleted by web browsers only when the
browser exits. Such cookies are typically used for au-
thentication purposes, and I partition them at a finer
granularity than hosts.

The challenges for building this abstraction in-
clude identifying additional browser resources to iso-
late between hosts, and determining how best to
partition these resources, since they may be shared
across multiple processes.

Session Abstraction I propose a first-class ses-
sion abstraction within the browser, as a subdivision
of the host abstraction. A session consists of all doc-
uments from a given host that share either a naviga-
tional or a parent-child relationship in the browser.
A navigational relationship exists between two doc-
uments when a user follows a link from one to the

2“Origins” correspond to the port, protocol, and full do-
main name of an object. However, scripts can truncate
the domain name used by the policy to a hostname (e.g.,
maps.google.com to google.com). For this reason, I choose the
hostname as a basic unit of isolation.
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other, either in the same window or in a new win-
dow. Note that following a link from one host to
another constitutes the creation of a new session. A
parent-child relationship is created by embedding a
child document as a frame in a parent document, or
by programmatically opening a child document in a
new window. This relationship corresponds to the set
of documents that can communicate via the DOM: a
document has no way of naming another document
with which it does not share a parent-child relation-
ship. An important note is that a user may have mul-
tiple concurrent and independent sessions with the
same host.

Sessions will be isolated from each other in two
ways. First, each session will correspond to exactly
one instance of a browser runtime environment. Run-
time environments will be separated by OS processes
or other lightweight fault domains to support re-
source isolation between sessions. Using shared li-
braries for the runtime environments will help keep
memory overhead low. Second, authentication infor-
mation will be isolated between sessions. This in-
formation includes both session cookies and HTTP
authentication credentials [32]. Because following a
link between hosts creates a new session, CSRF at-
tacks cannot be launched across host boundaries. In-
stead, a user’s authentication credentials remain tied
to the session in which she logged in. This feature
also allows web sites to easily support concurrent lo-
gins from a single user, if they rely on session cookies
to distinguish users.

Challenges for implementing the session abstrac-
tion include keeping overhead acceptably low and
helping users distinguish between sessions in the
browser. Identifying sessions is important for ac-
counting (e.g., tracking down a session with a mem-
ory leak), terminating misbehaved sessions, or keep-
ing track of authenticated sessions.

Relationship with the Browser In this pro-
posal, a web browser uses a single user interface to
display content from multiple runtime environments,
one per session, as shown in Figure 3. The abstrac-
tions of the UI (windows, tabs, and frames) are in-
dependent of the abstractions of the runtime envi-
ronments (sessions and hosts). I consider frames as
the basic unit for the UI: each tab consists of a top-
level frame and optionally some number of embed-
ded frames, and each window consists of one or more
tabs. Each web document is associated with exactly
one frame and exactly one session; each frame is asso-
ciated with a list of documents that form its history.
The browser’s UI is responsible for (1) mapping doc-
uments from each session to their respective frames,

Runtime Env.Runtime Env. Runtime Env.

A.com A.com A.com B.com

User Interface

Host

SessionSessionSession

Host

Figure 3: The browser’s user interface displays doc-
uments from multiple runtime environments. Each
runtime environment corresponds to a session.

(2) handling cross-session navigation, and (3) man-
aging bookmarks and preferences.

On the whole, this proposal will create a robust en-
vironment for interacting with web content from inde-
pendent hosts. It will isolate resource usage and au-
thentication information between browsing sessions,
and it will aim to prevent privacy leaks between hosts.
These benefits can be achieved without losing back-
wards compatibility with existing web content, as I
will demonstrate in my evaluation.

4.2 Browser Interposition Layer

BrowserShield demonstrated the utility of using flex-
ible security policies to protect web browsers. How-
ever, as discussed in Section 3.2, providing complete
interposition from outside the browser can be prob-
lematic. Similarly, related work on browser interpo-
sition is limited to particular forms of content, such
as JavaScript [3, 31] or Java [53].

In practice, many browsers also support extensions
to modify their behavior, but the frameworks for such
extensions are not designed with security in mind.
For example, Firefox extensions appear to have no
access to a page before it has been parsed or even be-
fore scripts begin to execute.3 Thus, it can be difficult
to improve browser security with current extension
frameworks.

Supporting Direct Interposition For these rea-
sons, I propose implementing a secure interposition

3For instance, the NoScript extension indirectly blocks
scripts using Firefox’s principal-checking logic [37, 38].

10



JavaScript Flash JavaRenderer

AppletMovieScriptHTML

Document Object Model (DOM)

Network

Interposition Layer

Interposition Layer

Browser

Figure 4: The proposed browser interposition layer
will mediate access to the DOM and network I/O,
regardless of content type.

layer within the browser itself. The layer will con-
sist of a set of hooks for registering policy functions
within the browser. The hooks will give policies di-
rect access to several key aspects of the browser, in-
cluding HTML, DOM elements, communication, and
JavaScript, as shown in Figure 4. More details on the
proposed hooks are specified below.

• HTML hooks allow policies to intercept HTML
strings before the browser parses and renders
them. These hooks are necessary for implement-
ing vulnerability shields.

• DOM hooks allow security policies to regulate
how particular DOM elements can be accessed
by any web content, regardless of format. Such
policies could govern how browser extensions ac-
cess the DOM as well.

• Communication hooks allow policies to restrict or
allow cross-document communication or HTTP
requests in flexible ways. Such hooks may be use-
ful for defining confinement policies on particular
sites, similar to Tahoma [8], or MashupOS-style
sandboxes within documents [24].

• JavaScript hooks allow policies to intercept
JavaScript code strings before they are parsed
or executed, which will allow the construction of
script whitelist mechanisms as policies. Hooks
inside the JavaScript engine will also allow inter-
position on individual JavaScript functions and
object manipulations, as supported by Browser-
Shield. Similar hooks could be provided for other
web content types.

The appropriate way to specify policies remains
an open challenge. It may be the case that the
JavaScript language is familiar and expressive enough
to define policies, if the appropriate hooks are made
available. Alternatively, the policy modules used in
Janus [20] could provide inspiration: modules could
read in a high-level policy specification and enforce it
on the relevant set of hooks.

Janus also demonstrates how multiple policies can
be registered on a single hook, allowing some to take
precedence over others. This would support hierar-
chical sets of policies. Policies defined within the
browser would take precedence, but additional poli-
cies could be provided in browser extensions or with
individual web documents.

Thus, I consider multiple deployment scenarios for
browser policies. The browser itself will include a set
of basic policies to confine web content. Vulnerabil-
ity shields could be distributed by system administra-
tors like virus signatures, without requiring browser
restarts. Users could also install their own policies
to add browser functionality or enhance security, as
a form of browser extension. Web sites could also
define their own policies to apply to their pages, as
supported by BEEP only for JavaScript policies [31].
Note that such site-specific policies are easy to isolate
from other web sites, given the isolation of runtime
environments described in Section 4.1.

Anupam and Mayer note that the composition of
security policies presents a challenging open ques-
tion [3]. For example, if JavaScript code under one
policy can communicate with an applet under a dif-
ferent policy, both policies may be violated. My pro-
posed interposition layer can possibly address this
challenge in browsers by uniformly enforcing basic
policies independent of the type of web content.

Finally, note that the set of hooks in the interpo-
sition layer may be largely browser agnostic, because
it applies primarily to content-specific issues. This
suggests that some policies could be browser inde-
pendent, while others could specify a list of specific
browsers and versions to which they apply.

Exploring Desirable Policies It is important to
demonstrate that the browser interposition layer is
expressive enough to support useful security policies.
Thus, I will explore the space of desirable policies
and implement a representative set. Clear candidates
include vulnerability shields like those in Browser-
Shield, as well as a script whitelist mechanism simi-
lar to that presented in preliminary work. I will pur-
sue enhancements to the whitelist mechanism to im-
prove its ability to handle dynamic scripts efficiently
and partly trusted scripts safely. Such enhancements
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could include consolidating signed code and sandbox-
ing scripts with unknown content.

I will also explore to what extent browser exten-
sions and plugins can be confined by policies, to apply
the principle of least privilege [45]. How easily filesys-
tem and network access can be mediated for exten-
sions and plugins remains an open question. Finally,
I will show how policies for the interposition layer can
support more powerful manipulations of web content
than current browser extensions.

4.3 Summary

The two principal aspects of my proposal combine
isolation of web content and interposition using flex-
ible security policies. These enhancements will make
visiting untrusted content in the browser demonstra-
bly safer. It will also become possible for researchers
to easily explore new browser security mechanisms,
by authoring policies rather than changing browser
source code.

5 Methodology and Evaluation

My hypothesis states that OS research can be used to
improve the security and robustness of modern web
browsers. To evaluate whether this is correct, I must
show that the isolation and interposition mechanisms
that I propose for browsers (1) create a demonstrably
safer environment for interacting with web content,
(2) do not disrupt existing web content, and (3) offer
benefits at an acceptable performance cost. My eval-
uation will show that implementations of these mech-
anisms can defend against existing security threats
and allow the browser to operate reliably in the face of
untrusted content. I will incorporate measurements
of popular web sites to show both that the stated
problems exist in practice and that my proposals of-
fer practical solutions.

5.1 Isolation Abstractions

I will implement the proposed session and host isola-
tion abstractions by extending my browser prototype
from preliminary work. The current prototype iso-
lates instances of Konqueror’s KHTML runtime envi-
ronment in separate processes.4 It must be modified
to (1) assign documents to KHTML instances based
on sessions, (2) support cross-document communica-
tion within a session, (3) partition session cookies
between sessions, and (4) partition other persistent

4I chose Konqueror over the more popular Firefox browser
because it offers better support for concurrent processes.

state between hosts. I will implement a pre-fork op-
timization to reduce session startup time, and I will
implement a session management tool to allow users
to view each session’s resource utilization, as well as
terminate misbehaving sessions.

Once these features are implemented, I will eval-
uate the prototype’s safety, backwards compatibility,
and efficiency. For safety, I will leverage my earlier
resource interference tests to show effective isolation
of crashes, CPU contention, and memory leaks. I
will augment these tests with further examples of real
world sites that cause interference with other sites. In
addition, I will show that the prototype can defeat
observed CSRF attacks by isolating authentication
information between sessions.

For backwards compatibility, I will test a repre-
sentative sample of popular web content in the pro-
totype browser. Unlike the tests in my preliminary
work, these tests will use recorded copies of web con-
tent to facilitate repeatability. I am primarily con-
cerned with preserving the functionality of existing
sites and do not expect to impact visual layout. Thus,
these tests will compare the sets of JavaScript errors
and the sets of loaded objects between an unmodified
browser and the prototype browser. I will also char-
acterize the use of session cookies and persistent cook-
ies for authentication on popular web sites. This will
show whether the prototype can defend current sites
from CSRF attacks, or whether some sites will need
to switch from persistent cookies to session cookies
for authentication purposes.

For efficiency, I will measure the time and mem-
ory costs for starting a new session and for navigating
intra-session and inter-session links. I will also eval-
uate whether process-based isolation should be re-
placed with lightweight fault domains like XFI [13].
To do this, I will measure the number of cross domain
calls during typical browsing operations to estimate
the communication cost for using processes. These
metrics will help reveal whether the time and space
costs of using processes for isolating browser sessions
are acceptable.

5.2 Browser Interposition Layer

To evaluate the proposed interposition layer, I will
implement a prototype based on the Firefox browser.
I will define an appropriate set of hooks for register-
ing policies, and I will make the hooks available via
the API for Firefox extensions. Modifying Firefox
is attractive because of its wide adoption and pop-
ular support for extensions. I will also consider the
challenges of implementing the interposition layer in
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Konqueror, to combine my two proposals in a single
browser implementation.

The interposition layer improves safety only via
the policies it supports, so I will evaluate its expres-
siveness and the safety offered by example policies. I
will build a representative set of security policies that
are not easily expressible in current browsers. These
will include vulnerability shields to defend known
Firefox vulnerabilities. I will show that such shields
can block observed exploits of these vulnerabilities.
I will also implement an improved script whitelist
mechanism as a policy, for which I will show effective
defense against observed XSS attacks. Finally, I will
explore the interactions between multiple policies,
showing how browser-level policies can take prece-
dence over policies provided by extensions and web
content.

The interposition layer itself should not impact
backwards compatibility with existing web content.
However, some policies may impact the way existing
web content behaves. I will build a default set of
policies that enforce current browser semantics, and
I will demonstrate that popular content is not dis-
rupted by these policies. Similarly, I will evaluate
whether vulnerability shields create false positives for
existing popular content. To achieve this, I will use
the same methodology proposed for evaluating the
isolation abstractions in Section 5.1. I will also in-
vestigate improvements to the practicality of script
whitelists (e.g., consolidation of signed scripts), and
I will incorporate whitelists into additional web ap-
plications.

For efficiency, I will evaluate the impact of both
the interposition layer and various security policies
on browser performance. I will construct microbench-
marks that exercise each of the implemented hooks,
as well as macrobenchmarks based on observed con-
tent from popular sites. I will then compare the run-
ning times of these benchmarks on an unmodified
copy of Firefox, a copy of Firefox with the interposi-
tion layer but no policies, and copies of Firefox with
various security policies. I will also show the per-
formance impact of composing multiple policies. In
addition, I will evaluate script whitelist performance
in this architecture, measuring both client rendering
times and server throughput. I anticipate that the
overhead of the interposition layer can be kept sub-
stantially lower than that of BrowserShield, and that
improvements to the script whitelist proposal may re-
duce its impact on server throughput for highly dy-
namic sites.

6 Conclusion and Future Work

Modern web browsers face a large number of threats
to their security and robustness. In particular, four
prominent threats include exploitable vulnerabilities,
interference from resource contention, XSS attacks,
and CSRF attacks. My hypothesis states that iso-
lation and interposition mechanisms from operating
systems research can be applied to web browsers to
effectively defend against these threats. This hypoth-
esis leverages the analogy between operating systems
and web browsers, both of which are responsible for
executing and confining programs from different ori-
gins. My proposed work offers principled abstractions
for isolating untrusted content in the browser, and it
evaluates mechanisms for enforcing this isolation on
existing content. My proposal also supports exten-
sible security policies with two types of interposition
layers. First, BrowserShield uses code rewriting and
can be deployed independent of clients. Second, an
interposition layer within the browser can support
policies independent of content type, at a lower cost
than code rewriting.

While this work addresses several current threats
on the web, there are many directions open for fu-
ture exploration. First, the proposed isolation and in-
terposition mechanisms may be helpful for exploring
how web content from different sources can commu-
nicate or otherwise be integrated safely. Such work
could build on the sandboxes proposed by Mashu-
pOS [24] and BEEP [31], potentially defining an API
to allow documents in different sessions to communi-
cate with each other. Second, the isolation of session
and host abstractions may play a useful role in de-
fending against phishing attacks. For example, visual
indicators of sessions in the browser’s user interface
could reduce opportunities for spoofing attacks. Fi-
nally, I hope for the browser interposition layer to
act as a platform for future web browser security re-
search, as it will support the distribution of security
policies as browser extensions rather than modifica-
tions to browser source code.

Overall, the preliminary, proposed, and future di-
rections discussed in this report support the hypoth-
esis that web browser security and robustness can be
demonstrably improved through the use of ideas and
mechanisms from operating systems research.
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