
RICE UNIVERSITY

A Pedagogic Programming Environment for Java

that Scales to Production Programming

by

Charles S. Reis

A Thesis Submitted

in Partial Fulfillment of the

Requirements for the Degree

Master of Science

Approved, Thesis Committee:

Robert Cartwright, Chair
Professor of Computer Science

Peter Druschel
Professor of Computer Science

Walid Taha
Assistant Professor of Computer Science

Houston, Texas

April, 2003

A Pedagogic Programming Environment for Java

that Scales to Production Programming

Charles S. Reis

Abstract

This thesis describes extensions to the DrJava development environment that make

it suitable for production programming. DrJava is an effective tool for teaching

introductory programming skills in Java, and its simplicity is a desirable characteristic

for projects of any size. To better support the development of large projects in DrJava,

a carefully selected suite of features has been added to the environment. To facilitate

interoperation with professional development environments, a plug-in supporting the

DrJava interface has been written for the Eclipse environment. As a result of this

work, DrJava has become an appropriate tool for teaching production programming

skills in an academic environment, without sacrificing its original goals.

Acknowledgments

I would like to thank my adviser, Robert “Corky” Cartwright, whose passionate views

on software development have greatly influenced me as a programmer and as a project

manager. His leadership and feedback have been essential to DrJava’s success.

I am very fortunate to have worked with Eric Allen, for his insight, discipline,

and continuous encouragement. I would also like to thank Brian Stoler, whose lead I

have followed and whose guidance and continued contributions have been immensely

beneficial.

I would like to express my appreciation for the advice and feedback provided by

Walid Taha and Peter Druschel, as well as the enthusiastic support of Zung Nguyen.

Finally, I would like to thank the numerous undergraduate and graduate students at

Rice whose substantial contributions to DrJava have been invaluable for this work.

Contents

Abstract i

Acknowledgments ii

List of Illustrations vi

List of Tables vii

1 Introduction 1

2 DrJava Background 4

2.1 Goals of the IDE . 4

2.2 Design Principles . 5

2.3 Development Process . 6

2.3.1 Extreme Programming . 6

2.3.2 Use of Open Source . 9

3 Related Work 11

3.1 Pedagogic Programming Environments 11

3.2 Professional Java IDEs . 12

3.3 Java Debuggers . 12

4 Features for Production Programming 14

4.1 Editing Multiple Files . 14

4.1.1 Selecting a File . 15

4.1.2 Implementation . 15

4.2 Improved Testing Support . 16

iv

4.2.1 Unit Test Support . 17

4.2.2 Implementation . 18

4.3 An Interactive Debugger . 18

4.3.1 Debugger Startup . 19

4.3.2 Value Inspection and Modification 21

4.3.3 Implementation . 24

5 Transition to Professional IDEs 28

5.1 The Eclipse Architecture . 29

5.2 DrJava Plug-in for Eclipse . 29

5.2.1 Design Goals . 30

5.2.2 Simplified Interface . 30

5.2.3 Interactions Pane . 31

5.2.4 Debugger Integration . 34

5.2.5 Plans for Future Integration 35

6 Teaching Production Programming with DrJava 36

6.1 A Pedagogic IDE for Production Programming 36

6.2 Students as DrJava Developers . 37

6.2.1 Extreme Programming in the Classroom 38

6.2.2 Open Source Tools . 40

6.2.3 Advanced Concepts and Technologies 41

7 Future Work 42

7.1 Additional Features . 42

7.2 Collaboration with External Developers 43

8 Conclusion 44

v

A Feedback from DrJava Users 45

Bibliography 47

Illustrations

2.1 The DrJava Pedagogic IDE, as of October 24, 2001. The basic

interface includes a Definitions Pane for writing programs (top) and

an Interactions Pane for experimentation (bottom). 5

4.1 Support for multiple open files in DrJava. 16

4.2 Integrated support for unit testing in DrJava. Test failures are

highlighted in the source code. 17

4.3 Attaching to a remote JVM with the JSwat debugger. Requires

several command line arguments to the JVM. 21

5.1 The DrJava Plug-in for Eclipse. 31

Tables

A.1 Institutions providing feedback on DrJava. 46

1

Chapter 1

Introduction

Integrated development environments (IDEs) for Java are designed to simplify the

task of writing Java programs. IDEs provide a graphical interface to a suite of de-

velopment tools, including source code editors and compilers. Some Java IDEs are

targeted at supporting programming instruction; others are directed at professional

development. Pedagogic IDEs play a critical role in instruction because they reduce

the clerical burden on the student and reinforce good program design.

Pedagogic IDEs for Java typically have simple, intuitive interfaces that are easy

for novice programmers to learn. However, existing pedagogic Java IDEs are lim-

ited in scope to introductory programming courses because they do not scale to the

larger projects assigned in later courses. This limitation stems partly from a lack

of advanced features, such as testing and debugging tools, which are important for

effective development of large Java projects. Another limiting factor is the choice of

program representation in many pedagogic IDEs. For example, in the BlueJ environ-

ment [26], users are encouraged to write and interact with programs by manipulating

UML diagrams [27]. While such graphical representations can help students visualize

object oriented programming concepts, they are ultimately restrictive and unable to

effectively express many programming abstractions, such as the Command design pat-

tern [14]. As the size and complexity of projects increase, programmers should have

access to any well-known abstraction mechanisms, not simply those with convenient

graphical representations. BlueJ’s “object bench” for interacting with objects is also

impractical for experimenting with large programs, as it requires menu selections and

graphical dialog completions for each object instantiation and method call.

2

Professional Java IDEs, on the other hand, are designed for developing large

projects. These environments often contain an overwhelming number of advanced

features, from incremental compilation and debuggers to refactoring tools, graphical

user interface (GUI) builders, and various code generation wizards. The quantity of

advanced features in these environments tends to be valued higher than the simplicity

or accessibility of the interface. This results in a steep learning curve for new users,

rendering most professional IDEs inappropriate for classroom use. In the classroom,

instructors should not be expected to spend valuable lecture or lab time teaching stu-

dents how to use the tools for the course. Indeed, even many professional developers

avoid professional IDEs in favor of lightweight solutions, including extensible editors

such as Emacs and compilation at a command line [17].

Despite the limitations of pedagogic IDEs and the complexity of professional IDEs,

it is still desirable to leverage integrated development environments in Java program-

ming courses and on large projects through the level of production development. To

address the needs of course instructors and the desires of many professional develop-

ers, it is important to create a lightweight and simple IDE with sufficient strength for

production programming.

A promising approach to create such an environment is through the extension of

an existing pedagogic Java IDE. The DrJava environment [1] was selected for this task

for several reasons. First, its interface is designed to focus on the source language itself

rather than graphical program representations [34]. This ensures that programmers

using DrJava are not limited in their expressiveness by the constraints of alternative

representations, allowing DrJava to scale beyond the introductory level. Second,

DrJava has been adopted in many introductory courses at institutions around the

world (see Appendix A), largely because of its simple interface and its Interactions

Pane, which provides a “read-eval-print loop” (REPL) for interactively evaluating

Java statements and expressions.1 Instructors and students in these courses actively

1See Chapter 2 for descriptions and a screenshot of DrJava’s features.

3

provide feedback to DrJava developers to improve the interface of the IDE. Third,

DrJava is freely available under the GNU GPL open source license [12], making

it easily accessible to instructors, students, and developers at any level. Finally,

the design principles and practices employed in the development of DrJava make it

feasible to rapidly and safely extend the environment while maintaining its high code

quality. Each of these characteristics makes DrJava a good candidate to extend to

meet the needs of production programmers.

To achieve this goal, a set of recent extensions to DrJava have been implemented

to make it an appropriate environment for writing programs up to the level of pro-

duction development. Both these extensions and the process used for their imple-

mentation have also enabled the use of DrJava for teaching production programming

skills in a classroom. Specifically, several carefully selected features have been added

to DrJava to help programmers effectively develop large projects. Meanwhile, mod-

ifications to IBM’s Eclipse IDE [18] have provided an easier transition from DrJava

to a professional IDE to help developers leverage additional features when necessary,

without facing a prohibitive learning curve in the new environment. Finally, DrJava

has been used as both an IDE and a course project for teaching students production

programming skills in an undergraduate course.

The remainder of this thesis is organized as follows. Chapter 2 introduces the Dr-

Java IDE and its development process, and Chapter 3 surveys related IDEs. Chapter

4 describes the implementation of new features for DrJava to support the development

of large projects. Chapter 5 covers a plug-in for the Eclipse IDE to ease the tran-

sition from DrJava, and Chapter 6 discusses the use of DrJava to teach production

programming skills. Chapter 7 outlines future enhancements to DrJava, and Chapter

8 concludes.

4

Chapter 2

DrJava Background

DrJava is a pedagogic Java programming environment developed and maintained by

students at Rice University. It is designed to support introductory programming

courses by providing a simple and interactive interface accessible to novices. To

manage the evolution of the DrJava code base, the development team uses high quality

design principles, Extreme Programming practices, and open source software. These

principles and practices are consistent with extending DrJava to support production

programming.

2.1 Goals of the IDE

The DrJava interface is designed to satisfy three primary goals: simplicity, interac-

tivity, and a focus on the source language [34]. First, the environment is designed to

be as simple and intuitive as possible to make it easily accessible to students with no

programming experience (see Figure 2.1 for a screenshot of DrJava). For this reason,

it has a small set of features relative to professional IDEs, and an emphasis is placed

on the reliability and predictability of the features which are included. Second, an

interactive user interface is provided by a “read-eval-print loop” (REPL) in DrJava’s

Interactions Pane, in which users can incrementally experiment with programs or

libraries. Third, DrJava maintains a focus on the source language itself by avoiding

code generation tools and graphical program representations. This focus helps inex-

perienced students quickly become comfortable with writing code, and ensures that

the expressiveness of the programmer is not limited by the IDE.

5

Figure 2.1 : The DrJava Pedagogic IDE, as of October 24, 2001. The basic interface
includes a Definitions Pane for writing programs (top) and an Interactions Pane for
experimentation (bottom).

2.2 Design Principles

DrJava developers are expected to use object oriented (OO) design principles with ex-

tensive use of design patterns. To create a loosely coupled and extensible code base,

the developers employ the Model-View-Controller, Mediator, Singleton, Command,

Visitor, and Adapter design patterns [14], among many others, in the implementa-

tion of DrJava. The use of design patterns allows new developers with OO design

backgrounds to quickly understand and extend the code base. Other good Java

programming practices are also encouraged, including designing for testability, docu-

mentation using Javadoc comments, avoiding the use of null as a value, and avoiding

mutable state whenever possible. To make the code easier to read and understand,

6

a set of coding standards is enforced. Our experience suggests that these principles

help keep the code robust, legible, modular, and extensible.

One notable aspect of DrJava’s architecture is the use of two Java Virtual Machines

(JVMs). Most of the IDE executes in one JVM as a traditional Java application, but

the Java interpreter used in the Interactions Pane must execute in a separate JVM

for safety reasons. This ensures that the IDE will remain responsive if the user enters

a divergent computation (such as an infinite loop) into the Interactions Pane.

2.3 Development Process

Beyond the design principles and goals of DrJava, a set of effective development

practices is necessary to make the project successful on a reasonable time scale. The

DrJava team relies on the Extreme Programming [25] methodology for this purpose,

because it supports rapid development of robust products and adapts well to an

academic environment [2]. The use of an open source license and open source software

have also been essential to the development of DrJava.

2.3.1 Extreme Programming

The DrJava development team adheres to the tenets of Extreme Programming when-

ever possible. Extreme Programming consists of a simple set of practices that em-

phasizes testing, communication, and customer feedback to safely and incrementally

deliver value in a product. The most important practices for DrJava include unit

testing, pair programming, the use of on-site customers, incremental development,

and continual refactoring. Each of these practices delivers specific benefits to the

DrJava project, as outlined below.

Unit Testing

A comprehensive suite of unit tests can provide an effective safeguard for the quality

of an Extreme Programming product. DrJava developers write unit tests for every

7

non-trivial method in the code base, creating executable guarantees of program be-

havior and expected invariants. Unit tests are also written to exhibit any bug that

is discovered, in an effort to both provide assurance that the corresponding bug fix

actually eliminates the problem and that a recurrence of the bug will be automatically

detected. Additionally, unit tests serve as a form of up-to-date, executable documen-

tation for the code base [23]. New developers read relevant unit tests to learn how

the original developers intended their code to be used, helping to transfer knowledge

and cope with high developer turnover.

To easily support the development of ubiquitous unit tests, programmers must

design code with testability in mind and practice test-driven development [25], in

which unit tests are written at the same time as the methods they protect. Also,

DrJava’s build script enforces that the entire suite of tests is run before each commit

to the code repository, ensuring that the code in the repository is high quality at any

point in time.

Pair Programming

Pair programming is a form of continual code review in which two developers work

at the same computer on the same task [24]. Pair programming has been shown

to be a remarkably effective technique for rapidly producing well-designed and well-

tested code, while lowering the rate of defect injection [40]. Pair programming also

serves as an effective mechanism for knowledge transfer, which is essential in the face

of the high developer turnover common in an academic environment. Specifically,

new team members can pair program with experienced members to quickly learn

relevant portions of the code base. Because of these properties, pair programming is

an important technique for quickly achieving the goals of the DrJava project, and it

is used whenever possible.

8

On-Site Customer

The presence of an on-site customer for an Extreme Programming project allows

developers to receive continuous feedback on the progress of the project and the

relative priority of each task. Such feedback is crucial to delivering a valuable product

to customers [24]. The DrJava developers themselves are actually on-site customers

of the product, as they use DrJava almost exclusively to work on the code base. This

allows the team to frequently discuss and refine specifications to improve the quality

of the product. Feedback is also frequently received from students and instructors of

introductory courses, both within Rice University and from around the world. This

feedback helps prevent DrJava from straying from its pedagogic goals.

Incremental Development

Each new feature for DrJava is broken into small tasks, each of which should take no

longer than a week of pair programming time. The time required for smaller tasks

is easier to estimate, and small tasks can add value to the product incrementally,

allowing for frequent releases to customers [24]. By operating on such a schedule,

the DrJava team produces incremental releases with new features every few weeks

and milestone releases intended for widespread use approximately once a month.

Each release is designed to add functionality requested by customers and fix bugs

reported by customers. This quick response to customer feedback demonstrates to

the community that DrJava is actively maintained and continually evolving to better

meet its goals.

Continual Refactoring

Extreme Programming does not allocate a significant amount of initial time on a

project for designing for extensibility or modularity. Instead, each task is implemented

as simply as possible, since future requirements for extensibility are often unclear.

As these requirements change and evolve, the code must be refactored to improve

9

its design and adapt to the changes [13]. Extreme Programming suggests that this

refactoring process should be continual, with developers improving existing code as

new features are added and as requirements change [25]. The process is facilitated by

the presence of ubiquitous unit tests, which ensure that refactoring one part of the

code base does not break invariants expected in another [24]. Continual refactoring

is actively employed by the DrJava team to improve modularity and eliminate poorly

written code as the project grows.

2.3.2 Use of Open Source

DrJava benefits in several ways from the use of an open source license and open source

software. Its free availability encourages its adoption by instructors and students.

By also making the source code available under an open source license such as the

GNU General Public License (GPL) [12], the pedagogic value of the project is raised.

Students learning how to build graphical Java applications can easily download and

inspect DrJava’s source code as a case study. The open source license also encourages

collaboration on the DrJava code base with developers outside the core team, either

for the implementation of new features and bug fixes or for new projects built on top

of DrJava. While other developers have the freedom to distribute modified versions

of DrJava, the original development team retains control over the official version

distributed to customers.

The DrJava development team itself also leverages open source software and other

resources available to the open source community to maintain the high momentum

of the project. Many professional quality open source tools are used in DrJava’s de-

velopment process, including Ant [3] for build scripting, CVS [9] for a source code

repository, and JUnit [4] for a unit test framework. Other open source code is incorpo-

rated into the DrJava code base itself when it helps avoid the duplication of effort for

a particular task. For example, DrJava’s Interactions Pane uses an extension of Dy-

namicJava [15], an open source Java interpreter. Many development and management

10

resources are also available to the open source community, most notably including the

SourceForge web site [30]. SourceForge is a collection of free hosting services for open

source projects, including a remote CVS repository and a file distribution system.

SourceForge also provides a suite of professional quality management tools for track-

ing feature requests, bug reports, and current tasks. The effort and resources that

would be required for development and management of the DrJava project without

SourceForge would have been largely cost-prohibitive. Thus, the availability of this

free service to open source projects like DrJava has been immensely beneficial.

11

Chapter 3

Related Work

3.1 Pedagogic Programming Environments

DrScheme

DrScheme [11] is a freely available pedagogic IDE for the Scheme programming lan-

guage that has served as a model for DrJava’s interface. DrScheme provides a source

editor, an Interactions Pane with a Scheme REPL, and support for a set of pedagogic

language levels.

BlueJ

BlueJ [26] is a widely used pedagogic Java IDE intended for teaching object oriented

programming concepts. Users construct classes graphically with UML diagrams [27],

with the ability to interact with instantiated objects through a graphical “object

bench.” BlueJ is maintained by Monash University and is freely available.

JJ

JJ [32] is a commercial, online development environment developed by PublicStat-

icVoidMain.com. Students interact with JJ solely through a web browser, with all

program code stored on a server accessible by instructors. JJ’s interface is relatively

cluttered, with several poorly labeled text panes and numerous buttons. Some of JJ’s

useful features include easy administration for instructors and support for pedagogic

subsets of the Java language.

12

Ready To Program

Ready To Program with Java Technology [16] is a commercial pedagogic Java IDE

developed by Holt Software. It is written in C++ and is only available for the

Windows platform. Ready To Program uses Java 1.1.8 and IBM’s Jikes compiler, and

its simple interface supports compilation and execution but not program debugging.

3.2 Professional Java IDEs

A large number of both commercial and open source Java IDEs are available for pro-

fessional developers, each of which contains a significant number of advanced features.

Because of their complexity and steep learning curves, these tools are inappropriate

for a pedagogic audience. JBuilder [7] and IntelliJ IDEA [22] are commercial IDEs

for writing enterprise applications. CodeGuide [29] is a commercial Java IDE with

support for GJ-style generic types [8]. NetBeans [39] is an open source IDE with

a modular framework for building large desktop applications. Eclipse is an open

source platform written by IBM for building IDEs through a plug-in architecture

[18]. Eclipse is bundled with a set of Java development tools by default, while a large

number of additional plug-ins are available online, both from IBM and third parties.

3.3 Java Debuggers

Sun distributes the Java Platform Debugger Architecture (JPDA) [36] as a framework

to support common debugging functionality on Java programs. There are many

debugging tools that leverage JPDA to suspend and step through program execution

while querying or modifying values.

JDB

JDB [35] is a text-based, standalone debugging tool distributed with JPDA, provid-

ing a command-driven interface to most of the JPDA functionality. It is intended

13

primarily as a demonstration of Java debugging functionality, and it requires users

to learn its syntax and manually connect to a Java Virtual Machine. In addition to

controlling program execution and inspecting values, JDB can evaluate some Java

expressions in the context of a suspended execution.

JSwat

JSwat [6] is a standalone, open source Java debugger. JSwat has a graphical user

interface and supports most common debugging functionality, but it does not contain

editing facilities or other typical IDE features.

BlueJ

BlueJ [26] provides a traditional debugger integrated with its “object bench.” Unlike

most Java debuggers, BlueJ allows arbitrary points of entry to the debugger, since

users can manually invoke any method from the “object bench” (not just main) to

reach breakpoints of interest. However, no other interactions can be performed while

a method call is suspended.

Professional IDEs

Almost all professional development environments provide integrated debugging fea-

tures through graphical panes in the application. These interfaces often have tables

or trees of information and buttons to control execution. A program must be started

from its main method to be debugged by these tools. CodeGuide [29] supports execu-

tion control and value inspection, but not value modification or expression evaluation.

NetBeans, JBuilder, and Eclipse all support execution control, value inspection and

modification, and limited expression evaluation through sophisticated user interfaces

[39, 7, 18].

14

Chapter 4

Features for Production Programming

The task of scaling DrJava to production programming primarily consists of adding

new features to the IDE to increase its utility for large projects. Early versions of

DrJava included the Interactions Pane and a source editor for editing a single file at

a time, along with integrated compiler support. These versions adapted well to the

needs of introductory courses, since small programs can be easily written in a single

source file and tested manually in DrJava’s Interactions Pane. Assignments in later

courses, however, tend to require multiple source files and have greater complexity.

To support the development of such projects in DrJava, it is necessary to evaluate

which features can be most effective without sacrificing the philosophy of DrJava.

Beyond the simplest programs, almost all Java projects contain multiple source

files, since each public class in Java must be defined in its own file. Because pro-

grammers tend to work on several related classes at a time, it is important to have

the ability to open multiple files concurrently. Dealing with the increased complexity

of larger programs and production level projects is another concern, which can be

addressed through new testing and debugging features. Each of these features can

be designed not to detract from DrJava’s simple interface, while providing important

benefits to programmers at almost any level.

4.1 Editing Multiple Files

Supporting multiple open documents is a fundamental requirement for effective devel-

opment of large projects in DrJava. It is a prerequisite for advanced features such as

the debugger, and it allows programmers to more naturally modify programs without

15

being restricted by the user interface.

4.1.1 Selecting a File

To preserve a simple and clean user interface, only a single file is displayed in DrJava

at any time, but with multiple file support, the user can easily switch between open

files through a graphical pane (see Figure 4.1). While many professional IDEs display

a tree of all of the files in a project, such a tree can require significant screen real

estate for files deeply nested in a package hierarchy. To reduce the amount of visual

space required and to simplify the appearance of the graphical pane, only a simple list

of open file names is displayed in DrJava. The full path to the “active” file is always

displayed in the status bar at the bottom of the window, to differentiate between

files of the same name in different directories. With this interface, the user can easily

select a file by name, only having to choose between files that are actually open.

4.1.2 Implementation

Prior to support for multiple open files, the logic for manipulating a file in DrJava was

located in the DefaultGlobalModel class, which provides access to all of the compo-

nents of the model as part of both the Mediator and Model-View-Controller design

patterns [14]. Adding support for multiple files involved moving file-related behav-

ior, such as saving, compiling, or closing a file, to a new OpenDefinitionsDocument

interface. An inner class of DefaultGlobalModel implements this interface, while

DefaultGlobalModel itself maintains a list of the open files.

For extensibility purposes, the DefaultGlobalModel class is unaware that only a

single file is selected in the user interface at any time. Thus, although the current

implementation of the view component can only display a single file, the model sup-

ports alternative views, which could display multiple files side by side. To maintain

the invariant that exactly one document is “active” in DrJava’s default view, the

relevant logic and state are included in a SingleDisplayModel class, a subclass of

16

Figure 4.1 : Support for multiple open files in DrJava.

DefaultGlobalModel. The view component listens for changes to the active docu-

ment in SingleDisplayModel and updates the user interface accordingly.

4.2 Improved Testing Support

At any skill level, testing programs is essential to understand a program’s behavior

and to avoid mistakes. DrJava’s Interactions Pane can be used to quickly test aspects

of a program by invoking methods and observing their behavior, but as programs grow

in complexity, it becomes important to make use of a more structured test framework.

Specifically, it should be easy to frequently repeat an entire suite of tests as a program

is modified, to ensure that old invariants are not broken. It is also important for the

test framework to be automated, without requiring the user to manually inspect test

17

results for their correctness.

4.2.1 Unit Test Support

The unit test methodology proposed by Extreme Programming is an effective tech-

nique for testing programs of any size, since it focuses on testing every non-trivial

method as it is written [24]. Thus, the test suite evolves as the program is written

and does not need to be addressed in a separate phase of development. For Java,

JUnit [4] is a widely used open source framework that enables developers to easily

write and run unit tests for their programs. Developers simply write test methods in

subclasses of JUnit’s TestCase class, and they can then use graphical or command

line tools to run the tests, being notified of any errors that occur. With integrated

JUnit support in DrJava, users can easily write and run unit tests within the IDE to

effectively test program components.

Figure 4.2 : Integrated support for unit testing in DrJava. Test failures are highlighted
in the source code.

18

4.2.2 Implementation

Since the JUnit framework is open source, its classes can be bundled within DrJava

itself. In this way, the JUnit classes are always available when compiling test classes,

since they are automatically included on the classpath of DrJava without any inter-

vention by the user.

To run a set of unit tests, the user can click the “Test” button on DrJava’s toolbar.

If this button is clicked while a JUnit test class is selected, DrJava invokes JUnit’s

text-based TestRunner class to run the tests. Any failures or errors returned by the

TestRunner are parsed and displayed in DrJava, in an interface similar to compiler

errors (see Figure 4.2). The user can click on an error in the “Test Output” tab, and

the corresponding line in the test class that caused the error is highlighted in yellow.

In the first iteration of JUnit integration in DrJava, JUnit tests were executed in

the same Java Virtual Machine (JVM) as the IDE. However, this architecture was

unsafe, since divergent code executed in a test case could cause the IDE to become

unresponsive. Tests are now executed in the same JVM as the Java interpreter used

by the Interactions Pane, which can be safely reset if a test stops responding.

4.3 An Interactive Debugger

For students with little programming experience, a REPL can be a useful debugging

tool with minimal conceptual overhead. The user can instantiate objects and call

methods to observe the behavior of a program, with the ability to conduct multiple

experiments without needing to recompile the program. This significantly reduces

the overhead of conventional experimentation, where developers must edit the main

method of a class and recompile the class between each experiment [34]. Many prob-

lems in simple programs can be isolated and understood solely through experimenta-

tion in a REPL.

However, as programs grow more complex, a traditional debugger can be an impor-

tant tool for locating and understanding defects in a program. Many such debuggers

19

exist for Java, either as standalone products or integrated into larger IDEs (see Chap-

ter 3). These debuggers provide a relatively common set of features presented in a

graphical user interface. They are implemented using Sun’s Java Platform Debugger

Architecture (JPDA) [36], allowing them to gain control over a program running in

a separate JVM. Common debugging features include the ability to:

• set “breakpoints” in source code, such that a program’s execution will be sus-

pended if the flow of control reaches a line of code with a breakpoint,

• inspect the values of variables and fields that are in scope in the context of a

suspended program, and

• modify the values of variables and fields that are in scope before resuming

execution, in an effort to dynamically correct erroneous values.

To make DrJava more effective for locating and correcting defects in complex

programs, a debugger with such features has been added. Through the integration of

this debugger with the REPL in DrJava’s Interactions Pane, these debugging features

have been made both simpler to use and more powerful than their counterparts in

traditional Java debuggers. Specifically, this integration allows arbitrary points of

entry for debugging, as well as the ability to query and modify the state of a program

using the source language itself, rather than through a large collection of graphical

panes.

4.3.1 Debugger Startup

One of the more restrictive and complicated aspects of traditional Java debuggers is

the process of starting a debugging session and conducting multiple related experi-

ments. DrJava provides a more intuitive technique for debugging programs through

conjunction with the Interactions Pane.

20

Starting Traditional Debuggers

In traditional Java debuggers, the user must select the main method of a particular

class to start a debugging session. This method is used to start a new JVM which the

debugger can control using JPDA. Unfortunately, this approach limits the program-

mer to debugging the parts of a program which are accessible from the usual control

flow from the main method. To conduct more specific experiments on particular

methods, the programmer must write and compile a custom main method solely for

debugging. This method must be updated and recompiled for each new experiment,

imposing a significant overhead for debugging.

Most traditional debuggers also provide an option to “attach” to an existing JVM

running either locally or on a remote host, but this can be a remarkably complicated

process for novice programmers. Specifically, this involves specifying a series of cryptic

command line arguments to the external JVM on startup, including an available port

number for the debugger to use (see Figure 4.3). While this can be a powerful

technique for advanced users, it is inappropriate for students first learning to use a

debugger, and it also fails to solve the dependence on a compiled main method to

initiate debugging.

Starting DrJava’s Interactive Debugger

In comparison to traditional debuggers, starting a debugging session in DrJava is

notably easier and more flexible. Once the user enables “Debug Mode” through a

command in the Debug Menu, DrJava’s debugger transparently attaches to the JVM

used by the Interactions Pane (see Chapter 2). The programmer can then use any

method invocation in the Interactions Pane as an arbitrary point of entry to the

debugger, rather than being limited to the main method of a class.

Additionally, the user is not restricted to single invocation of a method during

a debugging session. Instead, the user can continue to invoke methods and build

up state, reaching additional breakpoints or modifying and repeating particular ex-

21

Figure 4.3 : Attaching to a remote JVM with the JSwat debugger. Requires several
command line arguments to the JVM.

periments. Notably, multiple related experiments can be conducted without needing

to modify a main method or recompile any classes. Indeed, recompilation is not

necessary until the original program code itself is modified.

4.3.2 Value Inspection and Modification

In addition to suspending and stepping through the execution of a program to inspect

control flow, most Java debuggers allow users to inspect and modify the value of any

variable or field that is in scope when execution is suspended. DrJava’s Interactive

Debugger provides this functionality through the familiar interface of the Interactions

Pane.

22

Inspection and Modification in Existing Debuggers

Almost all traditional Java debuggers provide value inspection features through a

graphical interface with a “control panel”-like metaphor. These interfaces consist of

a collection of tables or trees displaying information and buttons to control the flow

of execution. The user can create a list of watched variables and fields, which is

updated with corresponding values each time the program execution is suspended.

Often, a separate tree is also presented with the values of all variables that are in

scope. Nodes in such a tree whose values are objects (and not primitive values) can

be visually expanded to view the enclosed fields. Many debuggers allow the user to

modify primitive values through the same graphical interface, simply by editing the

displayed values.

The debugger in the Eclipse IDE [18] also provides the ability to evaluate some

Java expressions in the context of a suspended execution. Unfortunately, this feature

is also provided in the “control panel” metaphor of the user interface, making it less

intuitive and more complicated than expression evaluation in a REPL. Specifically,

the user can enter a block of statements or expressions into a dialog box, which is eval-

uated each time execution is suspended. Multiple code blocks can be stored in a table

displaying the final result of each block, but each code block must be independent and

cannot be evaluated incrementally. Thus, the user interface prevents the user from

incrementally building up state without repeatedly modifying existing expressions.

Eclipse also does not support some language constructs in this expression evaluation

feature, such as defining anonymous subclasses or interface implementations. This

limits the expressiveness of the user to a subset of the language. Perhaps most sig-

nificantly, Eclipse’s error handling for user-defined expressions is remarkably poor,

merely indicating that an error has occurred without providing any diagnostic mes-

sages. This is not only an unacceptable interface for inexperienced programmers who

are still learning the language, but also makes it difficult for experienced programmers

to determine which language constructs are actually available in the feature.

23

Inspection and Modification in DrJava’s Interactive Debugger

Consistent with DrJava’s focus on the source language, DrJava’s debugger is designed

to allow the user to interact with program state as much as possible using Java itself,

rather than having a total dependence on a “control panel” of graphical components.

Some graphical components are still provided for the sake of convenience, including

tables displaying the current stack frames, a list of active threads, and even a table

of watched variables and fields. However, most value inspection and modification is

intended to be performed using source code directly typed into the Interactions Pane.

Just as the Interactions Pane can be used to invoke methods to encounter break-

points, it can also be used to interact with the state of a program while a thread

of execution has been suspended. When a breakpoint is encountered, a new prompt

is presented to the user in the Interactions Pane. Any interactions entered at this

prompt are evaluated in the context of the program suspension, as if the user was

incrementally running new lines of code in the suspended method. All variables that

are in scope at the suspension are available in the interpreter, including the “this”

object, which can provide access to any visible fields or methods. Thus, the user

can query the value of any variable or field by typing its name into the Interactions

Pane, or he can modify the value of any variable or field through a simple assignment

statement.

In addition to simple value queries and assignments, the Interactions Pane provides

a very intuitive interface for evaluating any arbitrary expressions and statements

within the context of a suspended execution. The user can easily instantiate new

objects and invoke methods, either to observe their behavior in a particular context

or to achieve the side effects of a particular method call. The REPL in the Interactions

Pane is a much more convenient interface for incrementally building up state than

the table of code blocks provided in Eclipse, since intermediate values can be queried

as they are defined and later expressions can use results defined by early expressions.

DrJava’s Interactions Pane also supports the full range of Java language constructs,

24

including anonymous subclasses or interface implementations, which are frequently

useful when programming with the Listener or Command design patterns [14].

4.3.3 Implementation

To provide traditional debugging functionality, DrJava leverages the JPDA frame-

work for controlling a separate JVM. JPDA is distributed with Sun’s Java Software

Development Kit (SDK), which is already a requirement for running DrJava because

it also includes the Java compiler. Using methods in JPDA classes, DrJava’s debug-

ger is able to set breakpoints and resume or step through the execution of program

threads, as well as query or modify visible variables and fields in the context of a

suspension.

Integrating the Debugger and Interactions Pane

A significant part of the necessary infrastructure for DrJava’s debugger was already

in place when the debugger project began, since the interpretations performed in

the Interactions Pane (via DynamicJava [15]) already ran in a separate JVM. While

this decision was originally made to allow the Java interpreter to execute potentially

unsafe or divergent code without adversely affecting DrJava’s own virtual machine

[34], it also provided a convenient architecture to debug the Interactions Pane from

the primary JVM.

For the purposes of simplicity, it is important that the debugger can attach to the

interpreter’s JVM transparently, without exposing low level details of JPDA to the

user. Thus, each time the interpreter’s JVM is started or reset, the requisite command

line arguments are automatically provided to the JVM to enable debugging, including

a unique port number for JPDA to use. To avoid the overhead imposed by the JPDA

classes when the debugger is not in use, DrJava does not actually attach to the

interpreter’s JVM using JPDA until the user enables “Debug Mode” through a menu

command.

25

Once Debug Mode is enabled, DrJava monitors any activity in the interpreter’s

JVM via the JPDA framework. Since the Interactions Pane can be used to invoke

methods in compiled classes, the user can set breakpoints in any source file and

reach them through methods invoked from the Interactions Pane. Thus, invoking a

class’s main method is not necessary to use DrJava’s debugging features, although

any main method can be conveniently invoked by hand using a shortcut provided by

DrJava. (The user can enter “java Foo arg1”, which is automatically translated to

“Foo.main(new String[]{"arg1"})”.)

Some debugging information is only available through JPDA if the classes being

debugged are compiled with the “-debug” flag, so DrJava always enables this flag

when compiling classes. This ensures that all debugging features can be used for all

user-defined classes which have been compiled with DrJava.

Allowing Interactions at a Program Suspension

The first iteration of DrJava’s debugger provided transparent startup and arbitrary

points of entry using the Interactions Pane, but it did not allow users to enter inter-

actions while a program was suspended at a breakpoint. Instead, an hourglass cursor

was displayed in the Interactions Pane until the program was resumed, preventing

the user from entering new input. Values could only be queried by typing the names

of variables or fields into a table of watched values, similar to traditional debuggers.

To allow users to enter interactions in the context of a breakpoint, a new instance

of the DynamicJava interpreter must be created in the original interpreter’s JVM. To

provide the correct contextual environment to the user, this new interpreter must be

given definitions for every visible variable in the suspended stack frame, as well as

a reference to the “this” object from the stack frame. The user can then interact

with these variables in a new thread until the original thread is resumed. As soon as

the thread is resumed, the values of any variables in the stack frame which have been

modified must be copied back into the stack frame.

26

These actions are accomplished using both JPDA and Remote Method Invocation

(RMI) [37]. When DrJava’s debugger classes detect that a thread has been suspended,

an RMI call is made to the interpreter’s JVM to create a new interpreter. The

debugger classes then obtain the names and values of all visible variables in the

suspended stack frame from JPDA. To define these variables in the newly created

interpreter, the debugger must obtain a JPDA ObjectReference to the Singleton

instance of DrJava’s InterpreterJVM class, which manages all the interpreters in use.

The debugger can then invoke the defineVariable method on the new interpreter

(via JPDA), for each variable and value in scope, as well as for the “this” object

from the stack frame. Once these variables have been defined, the debugger uses

RMI to instruct the InterpreterJVM to use this new interpreter for any subsequent

interactions. The debugger also changes the visual prompt in the user interface to

contain the name of the suspended thread, which is usually equal to the string being

interpreted by the thread.

At this point, the user can interact with the new interpreter to query and modify

values or invoke methods. Once the user steps or resumes the thread’s execution,

values for the variables in the stack frame are copied back from the interpreter, using

a similar technique to the one outlined above. The new interpreter can then be

disposed and the original interpreter and prompt are restored until the next program

suspension.

Current Limitations

Conceptually, the user is able to enter interactions at a breakpoint as if he is writing

new lines of code in the suspended method itself. However, this metaphor is not yet

entirely supported, since the current implementation of the debugger only provides

access to fields and methods if users explicitly include “this” in the name. For

example, if the “this” object contains a field named “x”, the user must refer to it as

“this.x” and not merely “x.” This is inconsistent with how fields can be referenced

27

within the methods of a class, and it is therefore unintuitive to the user. This problem

can be resolved either by aliasing field and method names in the interpreter with local

variables and methods, or by providing a more comprehensive notion of context to

DynamicJava.

28

Chapter 5

Transition to Professional IDEs

While some advanced features can be added to the DrJava IDE to better support the

development of larger projects, it is neither feasible nor desirable for DrJava to gain

the scores of features available in professional development environments. Indeed,

the simplicity of DrJava is considered an explicit strength in both pedagogic and

professional settings.

However, there are some cases when it is desirable to leverage certain features from

professional IDEs on large projects. For example, many professional IDEs provide

powerful refactoring tools which allow programmers to make sweeping changes to a

project quickly and safely. Such features might only be useful occasionally, but they

are unavailable in DrJava, and the transition from DrJava to professional IDEs can

be quite difficult due to the complicated user interfaces of the latter environments.

Users of DrJava may also find useful features from DrJava missing from such IDEs,

such as the Interactions Pane and Interactive Debugger.

To allow users of DrJava to leverage features from professional IDEs with minimal

effort, it is necessary to ease the transition to such environments. This can be accom-

plished through plug-ins to professional IDEs, which are pieces of code that add or

modify the functionality of an IDE. A plug-in can be used to provide a user interface

similar to DrJava within a professional IDE, complete with familiar features such as

the Interactions Pane and Interactive Debugger. While the IDE would retain much

of its original functionality and complexity, such a plug-in would make it easier for

users familiar with DrJava to quickly learn the environment.

Many existing development environments support the development of plug-ins,

29

including IBM’s Eclipse [18] and the jEdit extensible editor [31]. The Eclipse platform

was chosen as the best candidate for a DrJava plug-in because of the flexibility of

its architecture, its wide variety of advanced features produced by both commercial

third parties and the academic community, and its free availability under an open

source license.

5.1 The Eclipse Architecture

Eclipse is an open source platform created by IBM for building extensible integrated

development environments. The Eclipse platform contains a base set of functionality,

with all useful features provided as plug-ins. In fact, even the Java development tools

bundled with Eclipse are written as plug-ins to the base platform. This architecture

is explicitly designed to allow plug-ins to build upon one another through published

interfaces, allowing tool builders to leverage existing work. Plug-ins can be individual

views of information or editors of resources, which are all commonly displayed as

graphical panes in the main Eclipse window (known as the workbench). Plug-ins can

also define perspectives, which specify a set of views and editors with a particular visual

layout. For example, the bundled Debugger plug-in provides a Debug Perspective

which includes several graphical panes, such as a tree of running and suspended

threads, a list of watched variables, and a list of expressions to evaluate.

One of the key strengths of Eclipse is its active plug-in development community

[19], as well as IBM’s commitment to research, academics, and education through

the Eclipse Technology Project [20]. In fact, the DrJava Plug-in for Eclipse itself was

partly funded by an Eclipse Innovation Grant [21] provided by IBM.

5.2 DrJava Plug-in for Eclipse

The DrJava Plug-in for Eclipse is designed to provide several aspects of DrJava’s user

interface to the Eclipse platform, in an effort to support interoperability between

DrJava and Eclipse. The aspects of the plug-in include a simplified user interface

30

to make Eclipse’s learning curve less steep, an Interactions Pane with the full range

of functionality available in DrJava, and an Interactive Debugger similar to the one

discussed in Chapter 4.

The plug-in project is scheduled to be completed at the end of 2003, and it is being

developed incrementally. The first iteration contains a partly simplified user inter-

face and an Interactions Pane, while further interface refinement and an Interactive

Debugger will be pursued as future work.

5.2.1 Design Goals

In accordance with the development practices used for DrJava itself, the DrJava Plug-

in for Eclipse has been developed with Extreme Programming practices. Notably, this

includes the use of pair programming, unit tests, and continual refactoring.

In addition, an important design decision was made to reuse as much code from

the DrJava code base as possible, without duplicating code into a separate source tree.

This ensures that any bug fixes or feature enhancements to the Interactions Pane in

DrJava will be immediately available to the Eclipse plug-in without additional effort.

This decision also minimizes the amount of new code to be written for the plug-in,

as well as the opportunities for new defects to be introduced.

5.2.2 Simplified Interface

The first component of the plug-in provides a perspective to make Eclipse similar in

appearance to DrJava. As in the DrJava IDE, the DrJava perspective for Eclipse

includes an area for editing source files, with the new Interactions Pane displayed be-

low it (see Figure 5.1 for a screenshot). To switch between open documents, Eclipse’s

Package Explorer view is displayed to the left of the source editor, while the Console

and Search Results are displayed (when relevant) in a tabbed pane shared with the

Interactions Pane. To preserve the simplicity of the interface, other graphical panes

from Eclipse’s Java Development perspective, including a structural outline of the

31

selected class and a list of outstanding tasks, are hidden by default. Experienced

users can display these extra panes with menu commands.

Figure 5.1 : The DrJava Plug-in for Eclipse.

5.2.3 Interactions Pane

To provide a familiar environment in Eclipse to DrJava users, the plug-in includes an

Interactions Pane with equivalent functionality as its counterpart in DrJava. While

Eclipse does provide general purpose expression evaluation through its Java Scrap-

book feature, the interface is cumbersome and less intuitive than the REPL used in

DrJava’s Interactions Pane. In a Scrapbook page, users must type a block of code to

be evaluated, select it with the mouse, right-click on it, and then choose an appro-

priate evaluation command from the resulting contextual menu. Any resulting error

messages are inserted as text in the Scrapbook itself, requiring them to be manually

32

deleted or carefully avoided when evaluating new expressions. In contrast, DrJava’s

Interactions Pane is designed with a console-style interface, popularized through a

“read-eval-print loop” (REPL) for Lisp [33]. Input is accepted and evaluated each

time the user hits Enter, allowing the user to easily build up state incrementally.

Also, in the Interactions Pane, the values of any expressions ending without semi-

colons are displayed after each interpretation, making it easy for the user to view

the values of any variables or method invocations without using graphical widgets or

menus. Thus, adding the Interactions Pane to Eclipse not only provides a familiar

tool to programmers making a transition from DrJava, but also makes a convenient

Java REPL available to professional developers.

Implementation

To implement the Interactions Pane in Eclipse with as much code reuse as possible,

a fairly significant refactoring effort was necessary in relevant parts of the DrJava

code base. DrJava is designed with a Model-View-Controller architecture [14], so

the logic for the Interactions Pane is separate from the user interface code. Thus,

it would theoretically only be necessary to write a new view component to fit into

Eclipse’s Workbench, along with the controller code to link the view to DrJava’s

model. However, much of the logic in the model for the Interactions Pane was tightly

coupled with DrJava’s DefaultGlobalModel class, the Mediator class which provides

access to all of the functionality in DrJava. Since the plug-in for Eclipse does not

use most of DrJava’s model (including the source editor, compiler integration, JUnit

integration, and many other features), it was necessary to separate the logic for the

Interactions Pane into its own independent module.

This particular refactoring task is an excellent example of the benefits of Extreme

Programming practices. In Extreme Programming, an emphasis is placed on finding

a simple solution for a task rather than initially designing an extensible architecture

[25]. While the architecture of DrJava was already relatively modular and extensible,

33

it was previously unnecessary for the Interactions Pane to stand apart from the rest

of DrJava, so no time was spent creating a design to facilitate this. This only became

a requirement once the plug-in was designed, so it was addressed as a refactoring

effort at this time. Fortunately, other Extreme Programming practices ensured that

this refactoring could be completed quickly and effectively. Specifically, the existing

unit tests over the Interactions Pane logic ensured that any previous functionality was

not broken as a result of the refactoring, while the importance of frequent releases

ensured that the code base in the repository remained in a usable state at all times.

The refactoring effort itself resulted in a more modular design for DrJava, which both

allowed the Interactions Pane to run outside the context of the full DrJava IDE and

also made many aspects of DrJava’s logic easier to test. In fact, several previously

undetected bugs were discovered and corrected in the process of this refactoring.

Beyond the creation of a more modular and independent InteractionsModel

class, another large refactoring effort was necessary due to a notable difference be-

tween DrJava and Eclipse. DrJava, like most graphical Java applications, uses Sun’s

Swing architecture for its windowing toolkit. Swing provides all the classes neces-

sary to implement general purpose, cross-platform graphical user interfaces in Java.

Eclipse, on the other hand, uses IBM’s SWT framework for its windowing toolkit.

SWT is designed to be more closely integrated with each platform’s native windowing

toolkits than Swing, but it requires the user to download a platform-specific version

of Eclipse with appropriate native code.1 Ideally, the differences between Swing and

SWT would be isolated in the view components of the DrJava IDE and the Eclipse

plug-in. However, DrJava’s model previously used a Swing Document class to store

the contents of the Interactions Pane. This Swing Document could not be used effec-

tively as the model for an SWT StyledText widget, which expected text to be stored

in an equivalent SWT class. In the interest of avoiding duplicated state between Dr-

1Currently, Eclipse and SWT are available for Microsoft Windows, Linux (Motif or GTK 2),

Solaris (Motif), QNX, AIX, HP-UX, and Mac OS X.

34

Java’s model and the view component of the plug-in, the Swing Document class used

by DrJava was replaced by a new toolkit-independent DocumentAdapter interface,

using the Adapter design pattern [14]. This DocumentAdapter interface is used by

DrJava’s model without knowledge of which windowing toolkit is actually in use, and

it is implemented using Swing for the DrJava IDE and using SWT for the Eclipse

plug-in. With this DocumentAdapter in place, all technical hurdles to implementing

the Interactions Pane in Eclipse had been overcome.

The Interactions Pane phase of the Eclipse plug-in was developed and released

incrementally, in accordance with Extreme Programming. The schedule included two

pre-release versions of the plug-in as it evolved. With a simplified perspective already

in place, the first pre-release included an initial prototype of the Interactions Pane

using the DocumentAdapter framework. Part of the InteractionsModel refactoring

had been completed, but the code for communicating with the Java interpreter’s JVM

had not yet been refactored. Thus, for this pre-release, the Java interpreter actually

ran in the same JVM as Eclipse itself. While this was unsafe for production use

(since the user could render Eclipse unresponsive with divergent code), it provided

a good proof of concept for using the Interactions Pane in a plug-in. The second

pre-release included refactored RMI code in DrJava so that the Java interpreter used

in the Eclipse plug-in could be run in a separate JVM. This pre-release was safe to

use in a production setting. However, it was not integrated with the user’s open

projects in Eclipse, so user-defined classes were not placed on the classpath of the

Interactions Pane. The first full release of the plug-in will add any classpath entries

from the user’s open projects to the Interactions Pane, and it will also include a few

menu commands to reset the interpreter and load and save the history of commands.

5.2.4 Debugger Integration

The initial debugger integration in the DrJava Plug-in for Eclipse is relatively straight-

forward, leveraging the Debugger plug-in bundled with Eclipse. The RMI framework

35

for running DrJava’s Interactions Pane already allows the interpreter’s JVM to be

remotely debugged, since it passes the required command line arguments to the JVM

on startup. A menu command can be added as an extension to Eclipse’s Debugger

plug-in, allowing the user to start a debugging session by simply attaching to the

Interactions Pane rather than by invoking the main method of a particular class.

This menu command attaches to the interpreter’s JVM using the appropriate port,

allowing the user to take advantage of all of Eclipse’s debugger features with arbitrary

points of program entry from Interactions Pane. This approach does not yet support

the use of the Interactions Pane in the context of a suspended thread.

5.2.5 Plans for Future Integration

The remaining functionality for the DrJava Plug-in for Eclipse consists of allowing

interactions in the context of a suspended thread. This will allow the benefits of

DrJava’s Interactive Debugger (outlined in Chapter 4) to be leveraged within Eclipse.

With the Interactive Debugger functionality in place in the DrJava IDE, the plug-

in implementation of the debugger can proceed with similar goals and development

practices as the Interactions Pane implementation. Specifically, a component of the

plug-in will need to respond to events generated by Eclipse’s debugger. This com-

ponent will create appropriate responses in the Interactions Pane to provide a new

prompt in the context of a breakpoint. The majority of the code can be reused from

the debugger implementation in the DrJava IDE, with minimal code duplication.

After the debugger integration has been fully implemented, the remaining work

on the plug-in can include further refinements to the plug-in’s perspective to more

closely mimic the user interface of DrJava.

36

Chapter 6

Teaching Production Programming with DrJava

Through the extensions discussed in Chapter 4, DrJava has become an effective tool

for production programming. In fact, the DrJava developers use it almost exclusively

to work on the DrJava code base, illustrating its ability to scale to the development

of actively used products.

As a result, DrJava can be used as a pedagogic IDE to teach production program-

ming skills. It remains an appropriate tool for introductory courses, but these recent

extensions have allowed it to scale to more advanced courses as well. Interestingly,

the development process used for DrJava actually makes it an appropriate project for

production programming courses. Specifically, by extending the DrJava code base,

students are exposed to production development in an academic setting.

6.1 A Pedagogic IDE for Production Programming

When designing a production programming course, instructors must consider which

tools students will use for development. It is desirable for students to work in a

common development environment to ease course management, but the complex user

interfaces of most professional IDEs make them inappropriate for classroom use. Some

such courses have employed text editors (such as Emacs) and command-line compi-

lation, but instructors have lamented the lack of effective debugging tools with this

setup [41].

To solve this problem, instructors can use the DrJava IDE in production program-

ming courses. The simple and intuitive interface of DrJava makes it an easy tool to

introduce to students, while it provides sufficient power to support production devel-

37

opment. In fact, the task of introducing DrJava to students is entirely unnecessary

if the students are already familiar with it from introductory courses. Thus, DrJava

can be a very useful tool in production programming courses.

6.2 Students as DrJava Developers

Selecting a course project for a production programming course is another difficult

task, since the project should simulate many aspects of actual production develop-

ment, which can be difficult to reproduce in a classroom. For the past two years, the

COMP 312 Program Engineering course at Rice University has used DrJava itself as

a course project, putting students directly into development and management roles

for DrJava. In addition to providing lectures on the design principles appropriate for

software development in industry, the course teaches students Extreme Programming

practices and expects students to use these practices to extend and improve the Dr-

Java IDE. Through development on the DrJava code base, students learn effective

techniques for joining existing projects, supporting customers, and adding features

to a product in a safe and incremental manner. In fact, students in COMP 312 have

written a significant amount of DrJava’s core functionality, including the debugger,

the JUnit integration, and even the logic for indenting source files. Students also gain

experience with a suite of powerful development tools likely to be seen in industry,

as well as a large number of advanced programming concepts and technologies.

Managing even a small group of students working on diverse tasks on a common

code base can be formidable, so effective communication is critical. To make this task

feasible, the course employs several teaching assistants to serve as project managers

for the students. These teaching assistants must have prior experience developing

DrJava, because they are expected to pair program with students early in the course

on smaller projects to help transfer knowledge about the code base. Later in the

course, the teaching assistants manage project groups with no more than three pairs

of students, supervising each group’s progress on their tasks.

38

6.2.1 Extreme Programming in the Classroom

The COMP 312 course is designed to expose undergraduate students to Extreme

Programming as a set of effective development practices. All development on DrJava

has leveraged Extreme Programming since the project’s inception [34], making the

DrJava team an appropriate model for teaching these practices. While the general

benefits of Extreme Programming have been discussed in Chapter 2, some additional

benefits and necessary adaptations arise in a classroom setting.

Unit Testing

A comprehensive suite of unit tests is essential in a production programming course,

as it prevents new developers from inadvertently breaking functionality as changes

are made to the code base. While test-driven development is a simple concept to

teach, it can be difficult to enforce, as students often habitually leave testing until

the last phase of development.

Several techniques have been used in COMP 312 to ensure that students write

adequate unit tests for new code. First, lectures repeatedly emphasize the benefits and

safeguards provided by unit tests. Second, the first course assignment involves writing

unit tests for a small and partially incorrect code base, to give students experience on

a small scale. Third, students are introduced to the DrJava code base by fixing small

bugs, using unit tests to verify that a bug is fixed. Fourth, the teaching assistants

for the course monitor the code committed by students to ensure that adequate tests

have been provided.

It is worth noting that some tools, such as Clover [10], have been produced to

quantify the unit test coverage of a project. Such tools could be quite valuable in a

classroom setting to ensure students are writing new tests. Unfortunately, no code

coverage tools which support GJ-style generic types [8] have been found. Since the

DrJava code base uses generic types, the DrJava development team cannot yet use

39

unit test coverage tools.1

Pair Programming

Pair programming has been shown to be remarkably effective in a classroom setting,

helping students to rapidly produce high quality code while also transferring knowl-

edge of the code base among students in the class [40]. However, unlike an industrial

setting where developers have a common work schedule, undergraduate students have

diverse schedules which can make finding time to pair program quite difficult.

The COMP 312 course schedule is structured to address this situation. While the

course has three scheduled meetings per week, only the first two are used for lecture.

The third meeting is reserved for a closed lab to provide time for pair programming. A

single lab session of pair programming per week is insufficient for the course, however,

so the students are allowed to select their own pairs for each project to maximize the

amount of time they can spend working together.

On-site Customers

To ensure that the students address issues of high priority to the customers of Dr-

Java, Extreme Programming requires the team to work with on-site customers who

can provide regular feedback. While it may be infeasible for students to meet with

customers from other institutions, the students themselves are required to use DrJava

on their tasks, making them on-site customers of the product. To benefit from this,

class discussions are frequently held to refine specifications and resolve ambiguities,

with the students acting as both customers and developers. Students are also given

the opportunity to respond to feedback from users at other institutions, providing

another means for interaction with real customers.

1The Clover developers have expressed intentions to support generic types in future versions of

Clover, so this tool could be useful in future iterations of COMP 312.

40

Incremental Development

In a semester long production programming course, it is very important to define tasks

in small increments. This technique helps students refine their skills for estimating

the time required for a task, and it allows teaching assistants to easily monitor the

students’ progress and revise specifications if necessary. In fact, no fixed deadlines

are imposed on the tasks, since Extreme Programming places a greater emphasis on

producing high quality code and refining schedules than on meeting deadlines. To

ensure that students give appropriate attention to a course without project deadlines,

the students are required to log ten hours of course work per week outside lecture.

Another benefit of incremental development in a classroom is that the product can

be released frequently throughout the semester. In this way, students can see their

coursework downloaded and used by customers around the world, providing more

powerful feedback than a conventional grading system.

Continual Refactoring

Finally, instructing students to continually refactor existing code provides an oppor-

tunity for them to put design principles from earlier courses into practice. Even

well-designed code often needs to be refactored as a project evolves and new goals are

determined, and Extreme Programming makes this feasible through the safeguards

provided by the unit tests. Giving students the freedom to frequently refactor instills

a sense of pride and ownership in the project, keeping the quality of the code high.

6.2.2 Open Source Tools

The use of an open source license for DrJava has been quite beneficial for managing

COMP 312. As an open source project, DrJava is freely hosted on the SourceForge

development web site [30], which provides a powerful web interface for managing

tasks and feedback (see Chapter 2). Even with several teaching assistants acting

as project managers, the administration of COMP 312 would be remarkably more

41

difficult without the tools freely available through the SourceForge website.

The DrJava team also uses a large number of open source development tools which

have pedagogic value in COMP 312. Students learn valuable software engineering

concepts with these tools, such as software versioning with CVS [9], build scripting

with Ant [3], and unit testing with JUnit [4]. Each of these tools is freely available

for students to use on their own projects, providing an additional advantage over

cost-prohibitive commercial tools.

6.2.3 Advanced Concepts and Technologies

By extending DrJava in COMP 312, students are also introduced to a large number

of advanced programming concepts and technologies which are not covered in most

introductory courses. Most notably, DrJava involves a significant amount of con-

currency, exposing students to synchronization issues and possible race conditions.

Many tasks on DrJava can thus be useful for teaching students how to be aware of

the complications of concurrent programming.

Students also have the opportunity to learn several advanced frameworks and

technologies through work on the DrJava code base. DrJava not only has multiple

threads of execution, but actually runs in two separate JVMs: one for the IDE and

one for the Java interpreter used by the Interactions Pane. These two JVMs com-

municate using Sun’s Remote Method Invocation (RMI) framework, a technology

frequently used in networked or distributed applications. Meanwhile, DrJava’s Inter-

active Debugger extensively uses Sun’s Java Platform Debugger Architecture (JPDA)

to provide debugging functionality.

It is also notable that DrJava is written using GJ-style generic types [8] to produce

better type-safe designs. Currently, this requires DrJava to be compiled using Sun’s

JSR-14 prototype compiler [38], which is still under active development. Through the

use of JSR-14, students learn the safety and syntactic advantages of generic types,

while also learning how to deal with experimental and potentially buggy technologies.

42

Chapter 7

Future Work

7.1 Additional Features

A small number of additional advanced features can be added to DrJava to better

support the development of large projects, while still maintaining DrJava’s simple

interface for inexperienced users.

Project Support via Ant

All program manipulation in DrJava is currently handled at the granularity of indi-

vidual source files, without any representations of projects. While this interface is

appropriate for the small programs written by novice students, it can often be con-

venient to maintain project-level information for larger and more complex programs.

DrJava could be modified to provide support for projects, to allow users to save con-

figuration options specific to a project and compile or test an entire project at once.

To prevent tying users to a single development environment through a proprietary

project file, DrJava could save project related information in the form of Ant build

scripts [3]. Ant scripts are commonly used with large projects, and many professional

IDEs provide integrated support for Ant.

Javadoc Integration

Integrated support for Sun’s Javadoc API documentation tool is currently in progress.

Once completed, DrJava will be able to generate HTML documentation files for a pro-

gram, via Javadoc. A graphical window for viewing the HTML files will be provided

within DrJava.

43

7.2 Collaboration with External Developers

As an open source project, it is possible for developers outside Rice to contribute to

the DrJava project or leverage the code base for new products. These opportunities

can be leveraged to increase the pedagogic value of DrJava.

Software Engineering Courses

With published results on the use of DrJava development to teach Extreme Pro-

gramming [2], instructors from other institutions have expressed interest in forming

similar courses. These courses can use a similar technique with a different project,

but it would also be possible to allow students at other institutions to extend DrJava

in their own production environments. Control over DrJava is maintained by devel-

opers at Rice University, but students in other courses could submit patches with

new features or bug fixes to be approved by the developers at Rice. This presents an

opportunity to teach distributed development practices which may be encountered in

industry.

DrScala

The DrJava code base can also be used as a foundation for other projects to build

simple, lightweight, and stable IDEs. For example, the DrScala project involves mod-

ifying DrJava to support the Scala programming language [28]. Close communication

with such teams can be valuable for both DrJava and the resulting products, as

DrJava can be refactored for greater extensibility as these products are developed.

44

Chapter 8

Conclusion

The DrJava pedagogic IDE has become effective for production programming, both

as a simple but powerful environment for developing large projects and as a tool to

teach production programming skills. This has been accomplished through the addi-

tion of a small set of features which make editing, testing, and debugging programs

easier, without detracting from the simplicity which makes DrJava valuable for novice

programmers. An easier transition to professional IDEs has also been provided in the

form of an Eclipse plug-in, allowing DrJava users to take advantage of additional

features in Eclipse while using a familiar interface. Through the development and use

of these extensions, DrJava has been used effectively to teach production program-

ming skills in a classroom setting. Indeed, while using DrJava as an IDE, students

have added much of the core functionality of DrJava. As a result, it is clear that

the benefits of a pedagogic IDE such as DrJava can indeed be applied at the level of

production development.

45

Appendix A

Feedback from DrJava Users

The DrJava development team has received significant feedback on the IDE from

customers around the world, including many instructors and students in introductory

courses using DrJava. This feedback has been in the form of feature requests, bug

reports, and support requests through DrJava’s SourceForge project web site, as well

as through direct email to the development team. A list of institutions which have

provided feedback on DrJava is below.

46

Institution Location

Bloomington High School Bloomington, IL, USA

University of California, Irvine Irvine, CA, USA

Colby College Waterville, ME, USA

Cornell University Ithaca, NY, USA

Dublin City University Dublin, Ireland

Georgia Tech Atlanta, GA, USA

University of Huddersfield Queensgate, Huddersfield, UK

Indiana University Bloomington, IN, USA

University of Maryland College Park, MD, USA

University of Missouri, Columbia Columbia, MO, USA

Universite de Nice Sophia-Antipolis Nice, France

Rice University Houston, TX, USA

Universidade de São Paulo São Paulo, Brazil

Sheridan College Brampton, Ontario, Canada

University of Toronto Toronto, Ontario, Canada

University of Washington Seattle, WA, USA

Westminster College New Wilmington, PA, USA

Universidad de Sevilla Seville, Spain

Table A.1 : Institutions providing feedback on DrJava.

47

Bibliography

[1] E. Allen, R. Cartwright, B. Stoler. DrJava: A Lightweight Pedagogic Environ-

ment for Java. SIGCSE 2002, March 2002.

[2] E. Allen, R. Cartwright, C. Reis. Production Programming in the Classroom.
SIGCSE 2003, February 2003.

[3] The Apache Software Foundation. “The Apache Ant Project.”
(URL: http://ant.apache.org)

[4] K. Beck, E. Gamma. “JUnit, Testing Resources for Extreme Programming.”
(URL: http://www.junit.org)

[5] S. Bloch. Scheme and Java in the first year. In The Journal of Computing in

Small Colleges 15 (5). May 2000, 157-165.

[6] Blue Marsh Softworks. “JSwat - Graphical Java Debugger.”
(URL: http://www.bluemarsh.com/java/jswat/)

[7] Borland. “JBuilder.”
(URL: http://www.borland.com/jbuilder/)

[8] G. Bracha, M. Odersky, D. Stoutamire, P. Wadler. Making the future safe for

the past: adding genericity to the Java programming language. OOPSLA ’98,
October 1998.

[9] “Concurrent Versions System.”
(URL: http://www.cvshome.org)

[10] Cortex eBusiness. “Clover, A Code Coverage Tool for Java.”
(URL: http://www.thecortex.net/clover/)

[11] R. Findler, C. Flanagan, M. Flatt, S. Krishnamurthi, M. Felleisen. DrScheme:

A pedagogic programming environment for Scheme. In International Symposium

on Programming Languages: Implementations, Logics, and Programs, 1997, 369-
388.

[12] Free Software Foundation. “The General Public License.”
(URL: http://www.gnu.org/licenses/gpl.html)

48

[13] M. Fowler, K. Beck, J. Brant. Refactoring: Improving the Design of Existing

Code. Addison-Wesley, 1999.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements

of Reusable Object-Oriented Software. Addison-Wesley, Reading, Mass. 1995.

[15] S. Hillion. “DynamicJava.”
(URL: http://koala.ilog.fr/djava/)

[16] Holt Software. “Ready To Program with Java Technology.”
(URL: http://www.holtsoft.com/ready/)

[17] A. Hunt, D. Thomas. The Pragmatic Programmer. Addison-Wesley, 2000.

[18] IBM. “eclipse.org.”
(URL: http://www.eclipse.org)

[19] IBM. “Eclipse Community Projects and Plugins.”
(URL: http://www.eclipse.org/community/plugins.html)

[20] IBM. “The Eclipse Technology Project.”
(URL: http://www.eclipse.org/technology/)

[21] IBM Scholars Program. “eclipse Innovation Grants.”
(URL: http://ibm.com/university/eclipseinnovation/)

[22] IntelliJ. “IntelliJ IDEA.” (URL: http://www.intellij.com/idea/)

[23] R. Jeffries. “Essential XP: Documentation.”
(URL: http://www.xprogramming.com/xpmag/expDocumentationInXP.htm)

[24] R. Jefferies, A. Anderson, C. Hendrickson. Extreme Programming Installed.
Addison-Wesley, 2001.

[25] R. Jeffries. “What is Extreme Programming?”
(URL: http://www.xprogramming.com/xpmag/whatisxp.htm)

[26] M. Kölling, A. Patterson, B. Quig, J. Rosenberg. “BlueJ, The Interactive Java
Environment.”
(URL: http://www.bluej.org)

[27] Object Management Group. “Universal Modeling Language.”
(URL: http://www.uml.org)

[28] M. Odersky. “Scala: A scalable language.”
(URL: http://lamp.epfl.ch/scala/)

49

[29] Omnicore Software. “CodeGuide.”
(URL: http://www.omnicore.com)

[30] Open Source Developer Network. “SourceForge.”
(URL: http://sourceforge.net)

[31] S. Pestov. “jEdit - Open Source programmer’s text editor.”
(URL: http://www.jedit.org)

[32] PublicStaticVoidMain.com. “JJ Home Page.”
(URL: http://www.publicstaticvoidmain.com)

[33] E. Sandewall. Programming in an interactive environment: the “Lisp” experi-

ence. In Computing Surveys, 10(1), March 1978, 35-71.

[34] B. Stoler. A Framework for Building Pedagogic Java Programming Environ-

ments. Master’s thesis, April 2002.

[35] Sun Microsystems, Inc. “jdb - The Java Debugger.”
(URL: http://java.sun.com/products/jpda/doc/soljdb.html)

[36] Sun Microsystems, Inc. “Java Platform Debugger Architecture.”
(URL: http://java.sun.com/products/jpda/)

[37] Sun Microsystems, Inc. “Java Remote Method Invocation.”
(URL: http://java.sun.com/products/jdk/rmi/)

[38] Sun Microsystems, Inc. “JSR 14: Add Generic Types To The Java Programming
Language.”
(URL: http://www.jcp.org/jsr/detail/14.jsp)

[39] Sun Microsystems, Inc. “NetBeans.”
(URL: http://www.netbeans.org)

[40] L. Williams, E. Wiebe, K. Yang, M. Ferzli, C. Miller. In Support of Pair Pro-

gramming in the Introductory Computer Science Course. Computer Science Ed-
ucation, September 2002.

[41] C. Wege, F. Gerhardt. Learn XP: Host a Bootcamp Extreme Programming Ex-

amined. Addison-Wesley, 2001.

[42] Xinox Software. “JCreator.”
(URL: http://www.jcreator.com)

